
Function Block

Reference MTCP_NJ_Server

Revision 1.9

Author JP Viskovic

Date 16/08/2016

+ Support http://support-omron.fr/

OMRON ELECTRONICS S.A.S.
14 Rue de Lisbonne
93561 Rosny-sous-Bois cedex

Modbus TCP Server for NJ Controller

Function Modbus TCP server for Built-in Ethernet Port of NJ Controller

Server

File MTCP_NJ.zip

Conditions of

use

The FB Modbus TCP Server provides some read/write features in accordance

with the specifications defined by the Modbus organization.

The Modbus TCP Server function block is offered 'as is' and may serve as a basis

for development.

Users should previously test its adequacy to the final application.

Omron could not be held responsible in case of malfunction.

Principe The function block MTCP_NJ_Server switch to LISTEN mode waiting for a

Modbus TCP Client connection when Start input is activated.

We recommend to use the FB in a periodical task to not overload the primary

task.

List of functions supported by MTCP_NJ_Server:

Code Modbus Function

0x01 Read Coils

0x02 Read Discret Inputs

0x03 Read Holding Registers

0x04 Read Input Registers

0x05 Write Single Coil

0x06 Write Single Register

0x10 Write Multiple Registers

http://support-omron.fr/
http://support-omron.fr/zip/MTCP_NJ.zip

Function Block MTCP_NJ_Server Modbus TCP Server for NJ Controller

JPV 16/08/2016 Page 2/3

1- I/O variable of MTCP_NJ_Server

Input variable

Name type range Description

Start Bool OFF, ON Server Activation

Input/output Variables

Name type range Description

Registers Array of

1024 Words

0-FFFF Register area

Coils Array of

1024 bool

OFF, ON Coil area

Output Variables

Name type Range Description

Connected Bool OFF, ON ON : a client is connected

Error Bool OFF, ON Error flag

ErrorID UINT 0 - FFFF Error Code returned by the socket or Modbus

TCP server (see error code list below).

TCP_Status _eCONNECTION_STATE Enum _CLOSED

_LISTEN

_SYN SENT

_SYN RECEIVED

_ESTABLISHED

_CLOSE_WAIT

_FIN WAIT1

_CLOSING

_LAST ACK

_FIN WAIT2

_TIME WAIT

IP_Client String[24] w.x.y.z IP address of connected client

Port_Client UINT 0-65535 Port number of connected client

Error Code returned in ErrorID

Code Description

0001
Modbus

Exception

ILLEGAL FUNCTION

0002 ILLEGAL DATA ADDRESS

0003 ILLEGAL DATA VALUE

2000

Socket

error

Local IP Address Setting Error

2001 TCP/UDP Port Already in Use

2002 Address Resolution Failed

2003 Status Error

2004 Local IP Address Not Set

2006 Socket Timeout

2007 Socket Handle Out of Range

2008 Socket Communications Resource Overflow

Function Block MTCP_NJ_Server Modbus TCP Server for NJ Controller

JPV 16/08/2016 Page 3/3

Precautions in Using Socket Services

Precautions for UDP and TCP Socket Services

• Communications processing are sometimes delayed when multiple functions of the built-in Ether-
Net/IP port are used simultaneously or due to the contents of the user program.
• Communications efficiency is sometimes reduced by high communications traffic on the network line.
• The close processing for a close request instruction discards all of the buffered send and receive data
for the socket. For example, send data from a send request instruction immediately before the close
processing is sometimes not sent.
• After a socket is open, the built-in EtherNet/IP port provides a receive buffer of 9,000 bytes per TCP
socket and 9,000 bytes per UDP socket to enable data to be received at any time. If the receive buffer
is full, data received by that socket is discarded. Make sure that the user application always executes
receive requests to prevent the internal buffer from becoming full.

Precautions for UDP Socket Services

• The destination IP address can be set to a broadcast address for a UDP socket to broadcast data to
all nodes on the network. However, in this case, the maximum length of send data is 1,472 bytes.
Data lengths broken into multiple fragments (1,473 bytes or more in UDP) cannot be sent.
• For UDP socket, controls to confirm the reliability of communications, such as the confirmation of
send data, are not performed. To improve the reliability of communications when you use UDP sockets,
make sure the user program confirms that data is sent and resends data when necessary.

Precautions for TCP Socket Services

• If the TCP socket is closed on the remote node without warning during communications (i.e., if the
connection is closed), the socket at the local node must also be closed. You can use the Read TCP
Socket Status instruction (SktGetTCPstatus) to see if the connection is closed. Immediately close the
socket at the local node if the TCP socket at the remote node is closed.
• If the remote node’s TCP socket closes without warning, the data to send may remain in the buffer at
the local node. The remaining data is discarded in the local node’s TCP close processing. The steps
that are required in applications to avoid this include sending data from the sending node that permits
closing and closing the socket only after checking the remote node.
• While open processing is performed for a TCP socket, a port that was closed first cannot be opened
again for 60 seconds from the time the close processing is performed for the remote socket. However,
this is not true if you specified 0 (automatic assignment by the Unit) as the port for the SktTCPConnect
instruction.
• You can use Connect from another socket to open a connection to a socket that was opened with
Accept. A connection is not opened if you try to use Connect from another socket to open a connection
to a socket that was opened with Connect. Also, a connection is not opened if you attempt to use
Accept from another socket to open a socket that was opened with Accept. Furthermore, you cannot
use Connect from more than one other node to establish multiple connections with a single TCP
socket that was opened with Accept on the built-in EtherNet/IP port.
• You can use the keep-alive function for TCP sockets at the built-in EtherNet/IP port. The keep alive
function checks whether a connection is normally established when no data is sent or received for a
certain period on the communications line where the connection was established. The built-in Ether-
Net/IP port responds to checks from other nodes even if keep alive is not specified.

