

Test Report

Applicant : DIGITAL MATTER EMBEDDEDSOUTH AFRICA

Address Oval, St Georges Block, Cnr Meadowbrook Lane and Sloane Street,

Bryanston, Gauteng, South Africa

Report on the submitted samples said to be:

Sample Name(s) : Oyster3-4G-Bluetooth

Trade Mark : Digital Matter

Part No. : Oyster3-4G-Bluetooth

Sample Received Date : January 22, 2024

Testing Period : January 22, 2024 ~ January 26, 2024

Date of Report : January 26, 2024

Testing Location : 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community,

Matian Street, Guangming District, Shenzhen, Guangdong, China

Results : Please refer to next page(s).

TEST REQUEST	CONCLUSION
As specified by client, based on the performed tests on submitted sample, the result of	
Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium(Cr(VI)), PBBs, PBDEs,	
Dibutyl Phthalate(DBP), Butylbenzyl Phthalate(BBP), Di-2-ethylhexyl	PASS
Phthalate(DEHP) and Diisobutyl phthalate(DIBP) content comply with the limits set by	
RoHS Directive 2011/65/EU with amendment (EU) 2015/863.	上 和检测股份

Signed for and on behalf of LCS

Report No.: LCSA01174051R

Terry.Luo

A. EU RoHS Directive 2011/65/EU and its amendment directives

Test method: Refer to IEC 62321-1:2013&IEC 62321-2:2021&IEC 62321-3-1:2013, Screening by X-ray Fluorescence Spectroscopy (XRF).

Test result(s):

Sample	Sample		Date of sample					
No.	Description	Cd	Pb	Hg	Cr▼		r▼	submission/
	1		10	11g		PBBs	PBDEs	Resubmission
1	Black plastic shell	BL	BL	BL	BL	BL	BL	2024-01-22
2	Silver metal screw	BL	BL	BL	X	/	/	2024-01-22
3	Black plastic shell	BL	BL	BL	BL	BL	BL	2024-01-22
4	Black printed white label adhesive	BL	BL	BL	BL	BL	BL	2024-01-22
5	Grey foam adhesive	BL	BL	BL	BL	BL	BL	2024-01-22
6	White soft plastic washer	BL	BL	BL	BL	BL	BL	2024-01-22
7	Silver metal shrapnel	BL	BL	BL	X	/	/	2024-01-22
8	Black plastic shell	BL	BL	BL	BL	BL	BL	2024-01-22
9	Black PCB board	BL	BL	BL	BL	X	X	2024-01-22
10	Black printed white label adhesive	BL	BL	BL	BL	BL	BL	2024-01-22
江河首 ^{洲田}	Black printed white label adhesive	BL	BL	BL	BL	stin BL	BL	2024-01-22
12	Yellow semi transparent plastic tape	BL	BL	BL	BL	BL	BL	2024-01-22
13	Pink ceramic block	BL	BL	BL	BL	BL	BL	2024-01-22
14	Silver metal nails	OL	BL	BL	BL	/	/	2024-01-22
15	Beige semi transparent adhesive	BL	BL	BL	BL	BL	BL	2024-01-22
16	Silver metal shell	BL	BL	BL	BL	/	/	2024-01-22
17	Gray white body (SMT capacitor)	BL	BL	BL	BL	BL	BL	2024-01-22
18	Black body (IC)	BL	BL	BL	BL	BL	BL	2024-01-22
19	Black body (SMT capacitor)	BL	BL LCS	BL	BL	BL	BLCS	2024-01-22
20	Black PCB board	BL	BL	BL	BL	BL	BL	2024-01-22
21	Silver metal shell	BL	X	BL	X	/	/	2024-01-22
22	Black plastic card slot	BL	BL	BL	BL	BL	BL	2024-01-22
23	Silver metal pins	OL	BL	BL	BL	/	/	2024-01-22
24	Silver crystal oscillator	BL	BL	BL	BL	/	/	2024-01-22
25	Black glass body (IC)	BL	BL	BL	BL	BL	BL	2024-01-22

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

Page 3 of 14

Report No.: LCSA01174051R

Comple	Cample VS	Titlesting	a ran	Screening	g Result(s) king Fan	1	Date of sample	
Sample No.	Sample Description	Cd	Pb	Hg	Cr▼	В	r▼	submission/	
110.	Description	Cu	10	ng	CI	PBBs	PBDEs	Resubmission	
26	Soldering	BL	X	BL	BL	/	/	2024-01-22	
27	Black body (transistor)	BL	BL	BL	BL	BL	BL	2024-01-22	
28	Black body (diode)	BL	BL	BL	BL	BL	BL	2024-01-22	
29	Silver body (IC)	BL	BL	BL	BL	BL	BL	2024-01-22	
30	Green PCB board	BL	BL	BL	BL	X	X	2024-01-22	
31	Brown body (SMT capacitor)	BL	BL	BL	BL	BL	BL	2024-01-22	
32	Black body (IC)	BL	BL	BL	BL	BL	BL	2024-01-22	
33	Black body (IC)	BL	BL	BL	BL	BL	BL	2024-01-22	
34	Black adhesive	BL	BL	BL	BL	BL	BL	2024-01-22	
35	Black plastic wire leather	BL	BL	BL	BL	BL	BL	2024-01-22	
36	Silver metal wire core	BL	BL	BL	BL	/	/	2024-01-22	

Note:

1. Results were obtained by XRF for primary screening, and further chemical testing by ICP(for Cd, Pb, Hg), UV-Vis(for Cr(VI)) and GC-MS(for PBBs, PBDEs) are recommended to be performed, if the concentration exceeds the below warning value according to IEC 62321-3-1:2013(Unit: mg/kg).

Element	Polymers CS Testing	Metals CS Testing	Composite material
Cd	BL≤(70-3σ) <x<(130+3σ)≤ol< td=""><td>BL≤(70-3σ)<x<(130+3σ)≤ol< td=""><td>LOD<x<(150+3σ)≤ol< td=""></x<(150+3σ)≤ol<></td></x<(130+3σ)≤ol<></td></x<(130+3σ)≤ol<>	BL≤(70-3σ) <x<(130+3σ)≤ol< td=""><td>LOD<x<(150+3σ)≤ol< td=""></x<(150+3σ)≤ol<></td></x<(130+3σ)≤ol<>	LOD <x<(150+3σ)≤ol< td=""></x<(150+3σ)≤ol<>
Pb	BL≤(700-3σ) <x<(1300+3σ)≤ol< td=""><td>BL≤(700-3σ)<x<(1300+3σ)≤ol< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤ol< td=""></x<(1500+3σ)≤ol<></td></x<(1300+3σ)≤ol<></td></x<(1300+3σ)≤ol<>	BL≤(700-3σ) <x<(1300+3σ)≤ol< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤ol< td=""></x<(1500+3σ)≤ol<></td></x<(1300+3σ)≤ol<>	BL≤(500-3σ) <x<(1500+3σ)≤ol< td=""></x<(1500+3σ)≤ol<>
Hg	BL≤(700-3σ) <x<(1300+3σ)≤ol< td=""><td>BL≤(700-3σ)<x<(1300+3σ)≤ol< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤ol< td=""></x<(1500+3σ)≤ol<></td></x<(1300+3σ)≤ol<></td></x<(1300+3σ)≤ol<>	BL≤(700-3σ) <x<(1300+3σ)≤ol< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤ol< td=""></x<(1500+3σ)≤ol<></td></x<(1300+3σ)≤ol<>	BL≤(500-3σ) <x<(1500+3σ)≤ol< td=""></x<(1500+3σ)≤ol<>
Cr	BL≤(700-3σ) <x< td=""><td>BL≤(700-3σ)<x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<></td></x<>	BL≤(700-3σ) <x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<>	BL≤(500-3σ) <x< td=""></x<>
Br	BL≤(300-3σ) <x< td=""><td>N/A</td><td>BL≤(250-3σ)<x< td=""></x<></td></x<>	N/A	BL≤(250-3σ) <x< td=""></x<>

Remark:

- BL= Below Limit
- OL= Over Limit
- X= The range of needing to do further testing
- 3σ = The reproducibility of analytical instruments
- N/A= Not applicable
- LOD= Detection limit
- 2. The XRF screening test for RoHS elements The reading may be different to the actual content in the sample be of non-uniformity composition.
- 3. The maximum permissible limit is quoted from the document RoHS Directive 2011/65/EU with amendment (EU) 2015/863.
- 4. ▼=For restricted substances PBBs and PBDEs, the results show the total Br content, the restricted substance was Cr(VI), and the results showed the total Cr content.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China

Page 4 of 14

Maximum Concentration Value (mg/kg) (by weight in homogenous materials)
100
1000
1000
1000
1000
1000
1000
1000 THE PROPERTY OF THE PROPE
1000
1000

Disclaimers:

This XRF Screening report is for reference purposes only. The applicant shall make its/his/her own judgment as to whether the information provided in this XRF screening report is sufficient for its/his/her purposes. The result shown in this XRF screening report will differ based on various factors, including but not limited to, the sample size, thickness, area, surface flatness, equipment parameters and matrix effect (e.g. plastic, rubber, metal, glass, ceramic etc.). Further wet chemical pre-treatment with relevant chemical equipment analysis are required to obtain quantitative data.

LCS Testing L

Report No.: LCSA01174051R

B. EU RoHS Directive 2011/65/EU with amendment (EU) 2015/863 on Lead(Pb), Cadmium(Cd), Hexavalent Chromium(Cr(VI)), PBBs, PBDEs, DBP, BBP, DEHP & DIBP content

Test method:

Lead(Pb) & Cadmium(Cd) Content:

Refer to IEC 62321-5:2013, by acid digestion and analysis was performed by inductively coupled plasma optical emission spectrometer (ICP-OES) or atomic absorption spectrometer (AAS).

Hexavalent Chromium(Cr(VI)) Content:

Refer to IEC 62321-7-1:2015 or IEC 62321-7-2:2017, analysis was performed by UV-visible spectrophotometer (UV-Vis).

PBBs & PBDEs Content:

Refer to IEC 62321-6:2015, by solvent extraction and analysis was performed by gas chromatography-mass spectrometer (GC-MS).

Phthalates(DBP, BBP, DEHP &DIBP) Content:

Refer to IEC 62321-8:2017, by solvent extraction and analysis was performed by gas chromatography-mass spectrometer (GC-MS).

Test result(s):

1) Lead(Pb) & Cadmium(Cd)

Tested Item	MDL	Test Result(s) (mg/kg)	Limit
立语标识明 Cab	(mg/kg)	(21)	(mg/kg)
Lead(Pb) Content	5	33 78	1000

Tested Item	MDL		esult(s) /kg)	Limit	
	(mg/kg)	(14)	(23)	(mg/kg)	
Cadmium(Cd) Content	5	N.D.	N.D.	100	

2) Hexavalent Chromium(Cr(VI)(for coating on metal)

Tested Item	MDL	设份	Limit		
VST 1CS Tosting	(μg/cm ²)	(2)	(7)	(21)	(μg/cm ²)
Hexavalent Chromium(Cr(VI)) Content★	0.10 (LOQ)	N.D.	N.D.	N.D.	1000

*

Report No.: LCSA01174051R

3) Phthalates(DBP, BBP, DEHP &DIBP)

3) Phthalates(DBP, BBP, DEHP &DIBP)	Page 6 of 1	4 1150 Til		Report N	No.: LCSA	A01174051F
Tested Item(s)	MDL Te			Test Result(s) (mg/kg)		
rested item(s)	(mg/kg)	4	6	12	15	(mg/kg)
Dibutyl Phthalate(DBP) Content	50	N.D.	N.D.	N.D.	N.D.	1000
Butylbenzyl Phthalate(BBP) Content	50	N.D.	N.D.	N.D.	N.D.	1000
Di-(2-ethylhexyl) Phthalate(DEHP) Content	50	N.D.	N.D.	N.D.	N.D.	1000
Diisobutyl phthalate(DIBP) Content	50	N.D.	N.D.	N.D.	N.D.	1000
Ti开位 jung Lab	一方形位测	g Lab	1		古讯检测	ang Lab

Tested Item(s)	MDL		Test Result(s) (mg/kg)		
resteu rem(s)	(mg/kg)	34	35	(mg/kg)	
Dibutyl Phthalate(DBP) Content	50	N.D.	N.D.	1000	
Butylbenzyl Phthalate(BBP) Content	50	N.D.	N.D.	1000	
Di-(2-ethylhexyl) Phthalate(DEHP) Content	50	N.D.	N.D.	1000	
Diisobutyl phthalate(DIBP) Content	50	N.D.	N.D.	1000	

Tested Item(s)	MDL (mg/kg)	Test Result(s) (mg/kg) 1+3+5+8+9+10	Limit (mg/kg)
Dibutyl Phthalate(DBP) Content	50	N.D.	1000
Butylbenzyl Phthalate(BBP) Content	50	N.D.	1000
Di-(2-ethylhexyl) Phthalate(DEHP) Content	50	N.D.	1000
Diisobutyl phthalate(DIBP) Content	50	N.D.	1000

Tested Item(s)	MDL	Test Result(s) (mg/kg)	Limit	
IST LOS Testing La	(mg/kg)	11+13+17+18+19+20	(mg/kg)	
Dibutyl Phthalate(DBP) Content	50	N.D.	1000	
Butylbenzyl Phthalate(BBP) Content	50	N.D.	1000	
Di-(2-ethylhexyl) Phthalate(DEHP) Content	50	N.D.	1000	
Diisobutyl phthalate(DIBP) Content	50	N.D.	1000	

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

Page 7 of 14

LCS Leesting	MDI	Test Result(s)	Limit	
Tested Item(s)	MDL (mg/kg)	(mg/kg) 22+25+27+28+29+30	(mg/kg)	
Dibutyl Phthalate(DBP) Content	50	N.D.	1000	
Butylbenzyl Phthalate(BBP) Content	50	N.D.	1000	
Di-(2-ethylhexyl) Phthalate(DEHP) Content	50	N.D.	1000	
Diisobutyl phthalate(DIBP) Content	50	N.D.	1000	

Tested Item(s)	MDL (mg/kg) Test Result(s) (mg/kg) 31+32+33		Limit (mg/kg)
Dibutyl Phthalate(DBP) Content	50	N.D.	1000
Butylbenzyl Phthalate(BBP) Content	50	N.D.	1000
Di-(2-ethylhexyl) Phthalate(DEHP) Content	50	N.D.	1000
Diisobutyl phthalate(DIBP) Content	50	N.D.	1000

Report No.: LCSA01174051R

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China

4) Polybrominated Biphenyls(PBBs) & Polybrominated Diphenyl Ethers(PBDEs)

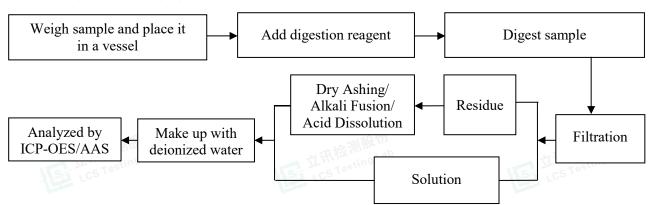
Tested Item(s)	MDL	Test Res (mg/k	Limit	
	(mg/kg)	(9)	(30)	(mg/kg)
Polybrominated Biphenyls(PBBs) Cont	ent			
Monobromobiphenyl	5	N.D.	N.D.	/
Dibromobiphenyl	5	N.D.	N.D.	/
Tribromobiphenyl	5	N.D.	N.D.	
Tetrabromobiphenyl	5	N.D.	N.D.	ing Lay
Pentabromobiphenyl	5	N.D.	N.D.	/
Hexabromobiphenyl	5	N.D.	N.D.	/
Heptabromobiphenyl	5	N.D.	N.D.	/
Octabromobiphenyl	5	N.D.	N.D.	/
Nonabromodiphenyl	5	N.D.	N.D.	/
Decabromodiphenyl	5	N.D.	N.D.	/
Total content	/	N.D.	N.D.	1000
Polybrominated Diphenylethers(PBDE	s) Content	二四检测用	J. (1)	二二位
Monobromodiphenyl ether	5	N.D. CS Tes	N.D.	SI LCATOS
Dibromodiphenyl ether	5	N.D.	N.D.	1
Tribromodiphenyl ether	5	N.D.	N.D.	/
Tetrabromodiphenyl ether	5	N.D.	N.D.	/
Pentabromodiphenyl ether	5	N.D.	N.D.	/
Hexabromodiphenyl ether	5	N.D.	N.D.	/
Heptabromodiphenyl ether	5	N.D.	N.D.	/
Octabromodiphenyl ether	5	N.D.	N.D.	可股份/
Nonabromodiphenyl ether	5 11	N.D.	N.D.	iting Lab
Decabromodiphenyl ether	5	N.D.	N.D.	/
Total content	/	N.D.	N.D.	1000

Shenzhen LCS Compliance Testing Laboratory Ltd.

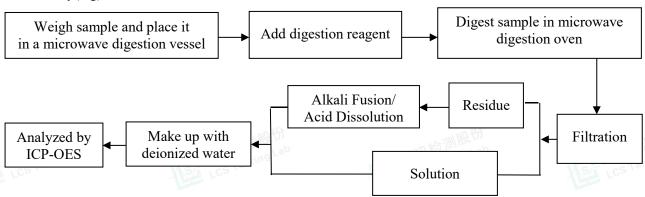
Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China

Note:

- MDL = Method Detection Limit
- N.D. = Not Detected (<MDL or LOQ)
- mg/kg= milligram per kilogram=ppm
- LOQ = Limit Of Quantification, The LOQ of Hexavalent chromium is 0.10 μg/cm²
- \star = a. The sample is positive for Cr(VI) if the Cr(VI) concentration is greater than 0.13μg/cm². The sample coating is considered to contain Cr(VI).
 - b. The sample is negative for Cr(VI) if Cr(VI) is N.D.(concentration less than $0.10\mu g/cm^2$). The sample coating is considered a non- Cr(VI) based coating.
 - c. The result between $0.10\mu g/cm^2$ and $0.13\mu g/cm^2$ is considered to be inconclusive, unavoidable coating variations may influence the determination.
- Information on storage conditions and production date of the tested samples is unavailable and thus Cr(VI) results represent status of the sample at the time of testing.
- According to customer's requirement, only the appointed materials have been tested.

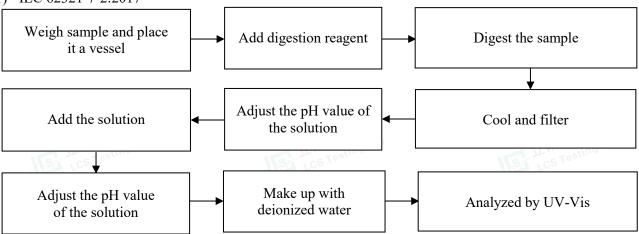


Shenzhen LCS Compliance Testing Laboratory Ltd.



Test Process

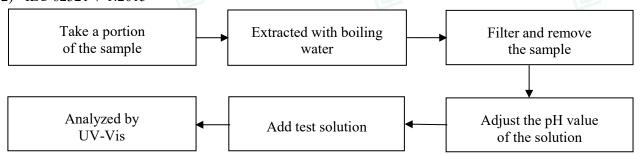
1. Lead(Pb) & Cadmium(Cd): IEC 62321-5:2013



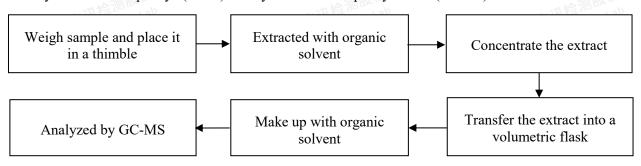
2. Mercury(Hg): IEC 62321-4:2013+AMD1:2017 CSV

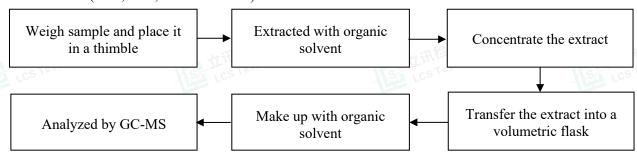
3. Hexavalent Chromium(Cr(VI))

1) IEC 62321-7-2:2017



Shenzhen LCS Compliance Testing Laboratory Ltd.

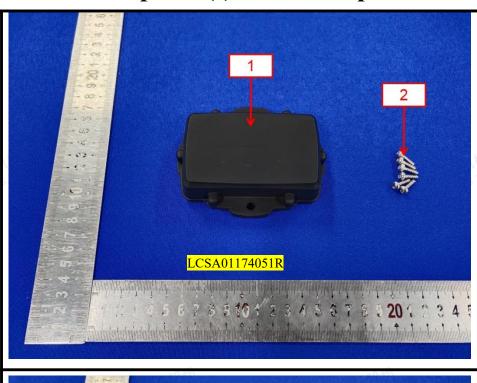

Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China

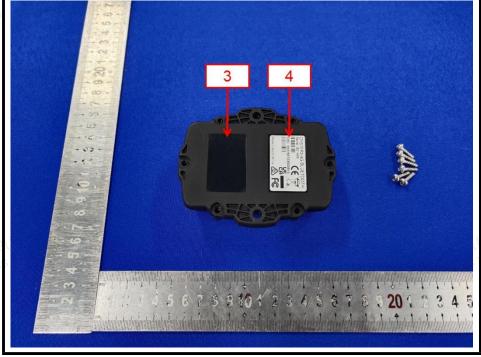

2) IEC 62321-7-1:2015

4. Polybrominated Biphenyls(PBBs) & Polybrominated Diphenyl Ethers(PBDEs): IEC 62321-6:2015

5. Phthalates(DBP, BBP, DEHP & DIBP): IEC 62321-8:2017

Report No.: LCSA01174051R



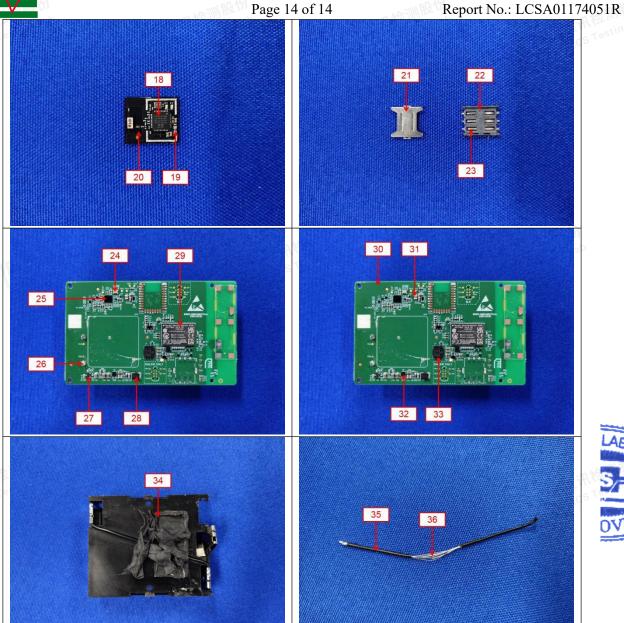

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China

The photo(s) of the sample

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 901, No.40 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, Guangdong, China



Page 14 of 14

Statement:

- The test report is invalid without the signature of the approver and the special seal for the company's report;
- The company name, address and sample information shown on the report were provided by the applicant who should be responsible for the authenticity which are not verified by LCS;
- The test results in this report are only responsible for the tested samples; 3.
- Without written approval of LCS, this report can't be reproduced except in full; 4.
- In case of any discrepancy between the corresponding Chinese and English contents in the test report, the Chinese version shall prevail.

*** End of Report ***

