



FCC TEST REPORT

# Digital Matter Embedded South Africa HAWK-PCB-LITE

Test Model: HAWK-PCB-LITE

Prepared for : Digital Matter Embedded South Africa

Address : The Oval, St George Building, Ground Floor Corner

Meadowbrook Lane and Sloane St, Bryanston, 2021

Report No.: LCSA06114023E

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : Room 101, 201, Building A and Room 301, Building C,

Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : June 11, 2024

Number of tested samples : 2

Sample number : A240607014-1, A240607014-2

Serial number : Prototype

Date of Test : June 11, 2024 ~ June 18, 2024

Date of Report : June 19, 2024







**FCC TEST REPORT** FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014

Report Reference No. .....: LCSA06114023E

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address.....: Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

Report No.: LCSA06114023E

District, Shenzhen, Guangdong, China

Testing Location/ Procedure....: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name...... Digital Matter Embedded South Africa

Meadowbrook Lane and Sloane St, Bryanston, 2021

**Test Specification** 

Standard...... FCC 47 CFR Part 15 Subpart B, Class B, ANSI C63.4 -2014

Test Report Form No...... LCSEMC-1.0

TRF Originator....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: : HAWK-PCB-LITE

Trade Mark : Digital Matter

Test Model .....: HAWK-PCB-LITE Ratings...... Input: DC 2-5.5V

Result .....: Positive

Scan code to check authenticity

Compiled by: Supervised by:

Cary Luo/ Technique principal Li Huan/Administrator

Gavin Liang/ Manager

Approved by:







**FCC -- TEST REPORT** 

Test Report No. : LCSA06114023E June 19, 2024

Date of issue

Test Model : HAWK-PCB-LITE

EUT : HAWK-PCB-LITE

Applicant : Digital Matter Embedded South Africa
Address : The Oval, St George Building, Ground Floor Corner
Meadowbrook Lane and Sloane St, Bryanston, 2021

Telephone : /
Fax : /

Manufacturer : Digital Matter Embedded South Africa
Address : The Oval, St George Building, Ground Floor Corner
Meadowbrook Lane and Sloane St, Bryanston, 2021

Telephone : /
Fax : /

Factory.....: Digital Matter Embedded South Africa

Address.....: The Oval, St George Building, Ground Floor Corner

Meadowbrook Lane and Sloane St, Bryanston, 2021

Report No.: LCSA06114023E

Telephone..... : / Fax..... : /

Scan code to check authenticity

Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.



T. C.





**Revision History** 

| Report Version | Issue Date    | Revision Content | Revised By |
|----------------|---------------|------------------|------------|
| 000            | June 19, 2024 | Initial Issue    |            |
|                |               |                  |            |
|                |               |                  |            |

Report No.: LCSA06114023E





















# TABLE OF CONTENTS

| Test Report Description                        | Page |
|------------------------------------------------|------|
| 1. SUMMARY OF STANDARDS AND RESULTS            | 6    |
| 1.1. Description of Standards and Results      | 6    |
| 2. GENERAL INFORMATION                         | 7    |
| 2.1. Description of Device (EUT)               | 7    |
| 2.2. Support Equipment List                    | 7    |
| 2.3. Description of Test Facility              | 8    |
| 2.4. Statement of the Measurement Uncertainty  | 8    |
| 2.5. Measurement Uncertainty                   | 8    |
| 3. TEST RESULTS                                | 9    |
| 3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT | 9    |
| 3.2. Radiated emission Measurement             | 11   |
| 4. PHOTOGRAPH                                  | 18   |
| 5 EXTERNAL AND INTERNAL PHOTOS OF THE FUT      | 20   |















Report No.: LCSA06114023E















# 1. SUMMARY OF STANDARDS AND RESULTS

# 1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

| EMISSION                                   |                                                            |         |         |  |  |
|--------------------------------------------|------------------------------------------------------------|---------|---------|--|--|
| Description of Test Item                   | Standard                                                   | Limits  | Results |  |  |
| Conducted disturbance at mains terminals   | FCC 47 CFR Part 15 Subpart B, Class<br>B, ANSI C63.4 -2014 | Class B | N/A     |  |  |
| Radiated disturbance                       | FCC 47 CFR Part 15 Subpart B, Class<br>B, ANSI C63.4 -2014 | Class B | PASS    |  |  |
| N/A is an abbreviation for Not Applicable. |                                                            |         |         |  |  |

| Test mode: |                  |        |
|------------|------------------|--------|
| Mode 1     | Normal operation | Record |



















# 2. GENERAL INFORMATION

#### 2.1. Description of Device (EUT)

EUT : HAWK-PCB-LITE

Trade Mark : Digital Matter

Test Model : HAWK-PCB-LITE

Power Supply : Input: DC 2-5.5V

| Highest internal frequency (Fx) | Highest measured frequency      |
|---------------------------------|---------------------------------|
| Fx ≤ 108 MHz                    | 1 GHz                           |
| 108 MHz < Fx ≤ 500 MHz          | 2 GHz                           |
| 500 MHz < Fx ≤ 1 GHz            | 5 GHz                           |
| Fx > 1 GHz                      | 5 × Fx up to a maximum of 6 GHz |

NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz

# 2.2. Support Equipment List

| Manufacturer | Description | Model | Serial<br>Number | Certificate |
|--------------|-------------|-------|------------------|-------------|
|              |             |       |                  |             |



YEA 立语检测股份







# 2.3. Description of Test Facility

Site Description EMC Lab.

: NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

#### 2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

### 2.5. Measurement Uncertainty

|                       | . As All 137                                            |                                   |                                     |
|-----------------------|---------------------------------------------------------|-----------------------------------|-------------------------------------|
| Test                  | Parameters                                              | Expanded<br>Uncertainty<br>(Ulab) | Expanded<br>Uncertainty<br>(Ucispr) |
| Conducted<br>Emission | Level accuracy<br>(9kHz to 150kHz)<br>(150kHz to 30MHz) | ± 2.63 dB<br>± 2.35 dB            | ± 3.8 dB<br>± 3.4 dB                |
| Radiated Emission     | Level accuracy<br>(9kHz to 30MHz)                       | ± 3.68 dB                         | N/A                                 |
| Radiated Emission     | Level accuracy<br>(30MHz to 1000MHz)                    | ± 3.48 dB                         | ± 5.3 dB                            |
| Radiated Emission     | Level accuracy (above 1000MHz)                          | ± 3.90 dB                         | ± 5.2 dB                            |

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.



LCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd.

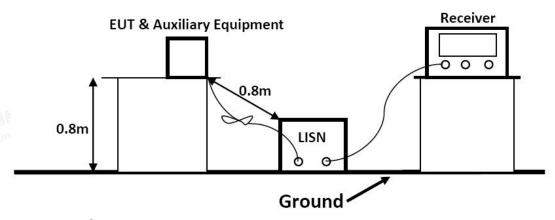
Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



3. TEST RESULTS

# 3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT


#### 3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Report No.: LCSA06114023E

| Item | Equipment                          | Manufacturer | Model No. | Serial No. | Cal Date   | Due Date   |
|------|------------------------------------|--------------|-----------|------------|------------|------------|
| 1    | EMI Test Software                  | Farad        | EZ        | 1          | N/A        | N/A        |
| 2    | EMI Test Receiver                  | R&S          | ESR3      | 102312     | 2024-03-02 | 2025-03-01 |
| 3    | Artificial Mains                   | R&S          | ENV216    | 101288     | 2025-06-05 | 2025-06-05 |
| 4    | Pulse Limiter                      | R&S          | ESH3-Z2   | 102750-NB  | 2023-08-15 | 2024-08-14 |
| 5    | Impedance<br>Stabilization Network | TESEQ        | ISN T800  | 45130      | 2023-10-18 | 2024-10-17 |

#### 3.1.2.Block Diagram of Test Setup



#### 3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)

|       | Frequency |                                | Limit (dBμV)  |               |
|-------|-----------|--------------------------------|---------------|---------------|
| (MHz) |           | Quasi-peak Level Average Level |               |               |
| 0.15  | NBS (17)~ | 0.50                           | 66.0 ~ 56.0 * | 56.0 ~ 46.0 * |
| 0.50  | ing Lat   | 5.00                           | 56.0          | 46.0          |
| 5.00  | ~         | 30.00                          | 60.0          | 50.0          |

NOTE1-The lower limit shall apply at the transition frequencies. NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

#### 3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity





3.1.5. Operating Condition of EUT

3.1.5.1. Setup the EUT as shown on Section 3.1.2

3.1.5.2. Turn on the power of all equipments.

3.1.5.3.Let the EUT work in measuring Mode 1 and measure it.

#### 3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

Report No.: LCSA06114023E

The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated

3.1.7.Test Results

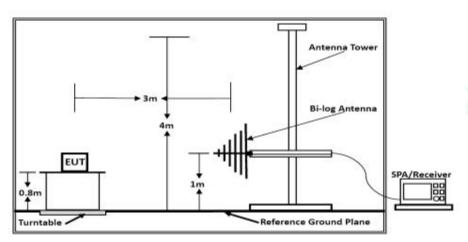
Not applicable.



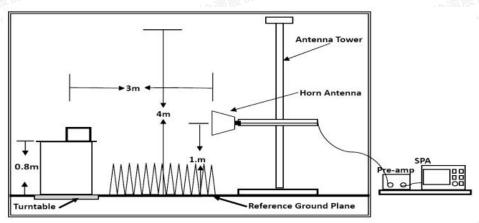




#### 3.2. Radiated emission Measurement


#### 3.2.1. Test Equipment

#### The following test equipments are used during the radiated emission measurement:


Report No.: LCSA06114023E

| Item | Equipment                   | Manufacturer   | Model No.  | Serial No.  | Cal Date   | Due Date   |
|------|-----------------------------|----------------|------------|-------------|------------|------------|
| 1    | EMI Test Software           | AUDIX          | E3         | 1           | N/A        | N/A        |
| 2    | 3m Semi Anechoic<br>Chamber | SIDT FRANKONIA | SAC-3M     | 03CH03-HY   | 2024-06-06 | 2025-06-05 |
| 3    | Positioning Controller      | Max-Full       | MF7802BS   | MF780208586 | N/A        | N/A        |
| 4    | By-log Antenna              | SCHWARZBECK    | VULB9163   | 9163-470    | 2021-09-12 | 2024-09-11 |
| 5    | Horn Antenna                | SCHWARZBECK    | BBHA 9120D | 9120D-1925  | 2021-09-05 | 2024-09-04 |
| 6    | EMI Test Receiver           | R&S            | ESPI       | 101940      | 2023-08-15 | 2024-08-14 |
| 7    | Low-frequency amplifier     | SchwarzZBECK   | BBV9745    | 00253       | 2023-10-18 | 2024-10-17 |
| 8    | High-frequency amplifier    | JS Denki Pte   | PA0118-43  | JSPA21009   | 2023-10-18 | 2024-10-17 |
| 9    | MXA Signal Analyzer         | Agilent        | N9020A     | MY50510140  | 2023-10-18 | 2024-10-17 |
| 10   | RS SPECTRUM<br>ANALYZER     | R&S            | FSP40      | 100503      | 2023-07-17 | 2024-07-16 |

#### 3.2.2. Block Diagram of Test Setup



Below 1GHz



Above 1GHz



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street,

Bao'an District, Shenzhen, Guangdong, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



#### 3.2.3. Radiated Emission Limit (Class B)

#### Limits for Radiated Disturbance Below 1GHz

Report No.: LCSA06114023E

| FREQUENCY  | DISTANCE | FIELD STRENGTHS LIMIT |          |
|------------|----------|-----------------------|----------|
| MHz        | Meters   | μV/m                  | dB(μV)/m |
| 30 ~ 88    | 3        | 100                   | 40       |
| 88 ~ 216   | 3        | 150                   | 43.5     |
| 216 ~ 960  | 3        | 200                   | 46       |
| 960 ~ 1000 | 3        | 500                   | 54       |

Remark: (1) Emission level (dB) $\mu$ V = 20 log Emission level  $\mu$ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

| Limits for Radiated Emission Above 1GHz                      |                                             |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| Frequency                                                    | Frequency Distance Peak Limit Average Limit |  |  |  |  |  |
| $(MHz)$ $(Meters)$ $(dB\mu V/m)$ $(dB\mu V/m)$               |                                             |  |  |  |  |  |
| Above 1000 3 74 54                                           |                                             |  |  |  |  |  |
| ***Note: The lower limit applies at the transition frequency |                                             |  |  |  |  |  |

#### 3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 3.2.5. Operating Condition of EUT

- 3.2.5.1. Setup the EUT as shown in Section 3.2.2.
- 3.2.5.2.Let the EUT work in test Mode 1 and measure it.

#### 3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

#### 3.2.7. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver



200

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity





Receiver ParameterSettingAttenuationAutoStart ~ Stop Frequency9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVGStart ~ Stop Frequency150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVGStart ~ Stop Frequency30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

| Spectrum Parameter                    | Setting                                   |
|---------------------------------------|-------------------------------------------|
| Attenuation                           | Auto                                      |
| Start Frequency                       | 1000 MHz                                  |
| Stop Frequency                        | 10th carrier harmonic                     |
| RB / VB (Emission in restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for |
| ,                                     | Average                                   |
| RB / VB (Emission in non-restricted   | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for |
| band)                                 | Average                                   |

The frequency range from 30MHz to 1000MHz and above 1000MHz is checked.

#### 3.2.8. Radiated Emission Noise Measurement Result

#### PASS.

The scanning waveforms please refer to the next page.













| Test Model   |                      |                    | HAWK-PCB-LITE                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Mode   |                            |                               | Mode 1                 |                                    |                  |  |  |
|--------------|----------------------|--------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|-------------------------------|------------------------|------------------------------------|------------------|--|--|
| Environme    | ntal C               | onditions          | 23.8℃,                         | 52.3% R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Н           | Detector Function Distance |                               |                        | <b>Detector Function</b> Quasi-pea |                  |  |  |
| Pol          |                      |                    | Vertical                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,           |                            |                               |                        | 3m                                 |                  |  |  |
| Test Engine  | est Engineer         |                    |                                | Paddi Chen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                            | Test Voltage                  |                        |                                    | DC 5V            |  |  |
| 70.0 dB      | uV/m                 |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                            |                               |                        |                                    |                  |  |  |
| 60           |                      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                            |                               |                        |                                    |                  |  |  |
| 2000         |                      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                            | FCC Part15 RE-                | Class B_30-1           | 000NHz                             |                  |  |  |
| 50           |                      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                            | Margin -6 dk                  | -                      |                                    |                  |  |  |
| 40           |                      | +++                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -           |                            |                               |                        | 2                                  |                  |  |  |
| 30           |                      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4           |                            |                               |                        |                                    | 6                |  |  |
| 20           | *                    |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4           |                            |                               | 5                      | 1 1 1                              | peak peak        |  |  |
| 10           |                      | 2                  | 3                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                            | approved and the state of the | Many the will make the | he was been the other              |                  |  |  |
| - Warn       | W W Della Jage and C | All Republicania   | 14 Malyan was all all Marky of | Holy and a factor of the state | May Jackson |                            |                               |                        |                                    |                  |  |  |
| 0            |                      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                            |                               |                        |                                    |                  |  |  |
| -10          |                      | + + + +            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +           |                            | 1                             |                        |                                    |                  |  |  |
| -20          |                      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +           |                            |                               |                        |                                    |                  |  |  |
| -30          |                      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                            |                               |                        |                                    |                  |  |  |
| 30.000 60.00 |                      | Reading Factor L   |                                | evel Limit Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                            |                               | 1000.000               |                                    |                  |  |  |
|              | No.                  | Frequency<br>(MHz) | Reading<br>(dBuV)              | (dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12(12)-032  |                            | ) (dBuV/m)                    | Margin<br>(dB)         | Detector                           | 女语 <sup>拉到</sup> |  |  |
|              | 1                    | 36.8953            | 40.18                          | -17.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2           | 2.49                       | 40.00                         | -17.51                 | QP                                 | Les Tos          |  |  |
|              | 2                    | 57.7962            | 30.69                          | -18.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           | 2.24                       | 40.00                         | -27.76                 | QP                                 |                  |  |  |
|              | 3                    | 102.7192           | 28.86                          | -18.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _           | 0.45                       | 43.50                         | -33.05                 | QP                                 |                  |  |  |
|              | 4                    | 315.4808           | 28.71                          | -14.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           | 3.97                       | 46.00                         | -32.03                 | QP                                 |                  |  |  |



5

6

530.1014

869.1302

29.46

40.15



-12.54

-8.75

16.92

31.40



QP

QΡ

-29.08

-14.60

46.00

46.00





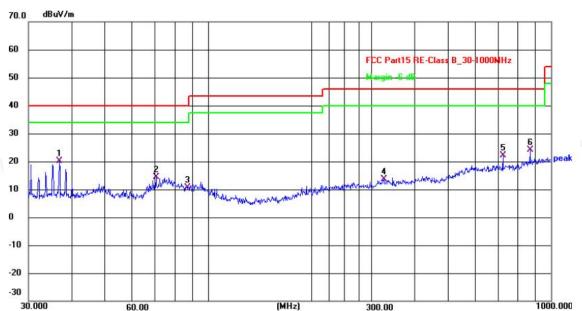






Paddi Chen




Pol

**Test Engineer** 

HAWK-PCB-LITE **Test Mode Test Model** Mode 1 23.8°C, 52.3% RH **Detector Function Environmental Conditions** Quasi-peak Horizontal **Distance** 3m DC 5V

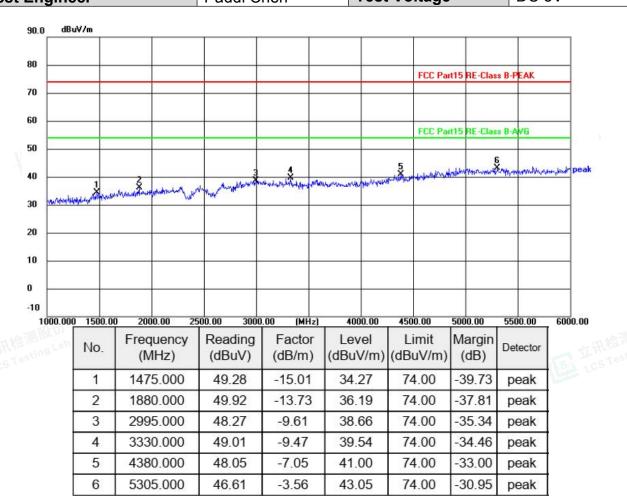
Test Voltage

Report No.: LCSA06114023E



|     | 00.00              |                   |                  |                   | ,00.00            |                |          |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| 1   | 36.8953            | 37.91             | -17.69           | 20.22             | 40.00             | -19.78         | QP       |
| 2   | 70.5836            | 33.89             | -19.49           | 14.40             | 40.00             | -25.60         | QP       |
| 3   | 87.1117            | 29.79             | -19.17           | 10.62             | 40.00             | -29.38         | QP       |
| 4   | 325.5958           | 27.93             | -14.21           | 13.72             | 46.00             | -32.28         | QP       |
| 5   | 724.2611           | 32.66             | -10.53           | 22.13             | 46.00             | -23.87         | QP       |
| 6   | 869.1302           | 32.79             | -8.75            | 24.04             | 46.00             | -21.96         | QP       |
|     |                    |                   |                  |                   |                   |                |          |

Note: 1. Pre-Scan all mode, Thus record worse case mode result in this report.


Note: Margin= Reading level + Correct factor - Limit

Correct Factor=Antenna Factor+Cable Factor- Pre-amplifier Factor





Mode 1 (Above **Test Model** HAWK-PCB-LITE **Test Mode** 1GHz) **Environmental Conditions Detector Function** Peak + AV 23.9℃, 52.0% RH Pol **Distance** 3m Vertical **Test Engineer** Paddi Chen **Test Voltage** DC 5V



Tin 拉测器划

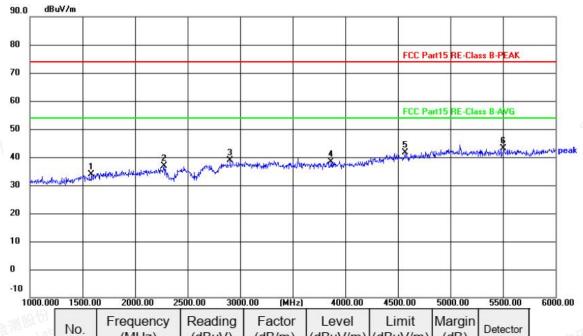
医 LCS Testing Lab



Report No.: LCSA06114023E














| Test Model                      | HAWK-PCB-LITE Test Mode    |                          | Mode 1 (Above 1GHz) |  |  |
|---------------------------------|----------------------------|--------------------------|---------------------|--|--|
| <b>Environmental Conditions</b> | 23.9℃, 52.0% RH            | <b>Detector Function</b> | Peak + AV           |  |  |
| Pol                             | Horizontal <b>Distance</b> |                          | 3m                  |  |  |
| Test Engineer                   | Paddi Chen                 | Test Voltage             | DC 5V               |  |  |
| 90.0 dBuV/m                     |                            |                          |                     |  |  |



| .000       | 1300.00 | 2000.00            | 2300.00 300    | U.UU [MI12]      | 4000.00           | 4300.00           | 3000.00        | 3300.00  |
|------------|---------|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|
| ric<br>eis | No.     | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|            | 1       | 1585.000           | 48.51          | -14.66           | 33.85             | 74.00             | -40.15         | peak     |
|            | 2       | 2275.000           | 48.95          | -12.14           | 36.81             | 74.00             | -37.19         | peak     |
|            | 3       | 2905.000           | 48.89          | -9.92            | 38.97             | 74.00             | -35.03         | peak     |
|            | 4       | 3865.000           | 47.05          | -8.78            | 38.27             | 74.00             | -35.73         | peak     |
| 2          | 5       | 4570.000           | 47.93          | -6.23            | 41.70             | 74.00             | -32.30         | peak     |
|            | 6       | 5505.000           | 46.38          | -3.20            | 43.18             | 74.00             | -30.82         | peak     |
|            |         |                    |                |                  |                   |                   |                |          |

Note: 1. Pre-Scan all mode, Thus record worse case mode result in this report.





















# **PHOTOGRAPH**

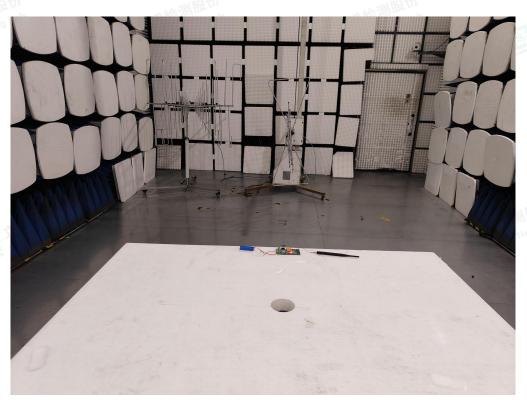



Photo of Radiated Measurement

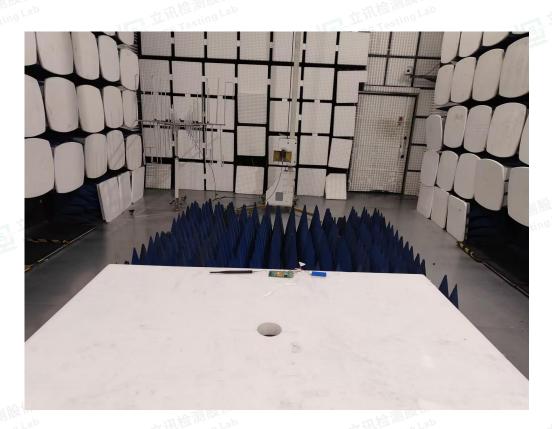



Photo of Radiated Measurement (Above 1GHz)



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com



Page 19 of 24 Report No.: LCSA06114023E





















# 5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT



Fig. 1



Fig. 2



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street,

Bao'an District, Shenzhen, Guangdong, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

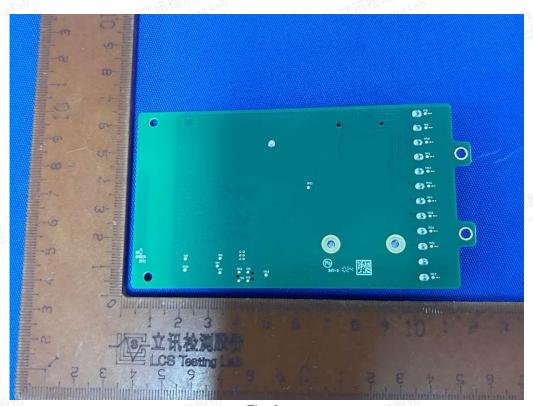



Fig. 3



Fig. 4



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street,

Bao'an District, Shenzhen, Guangdong, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com



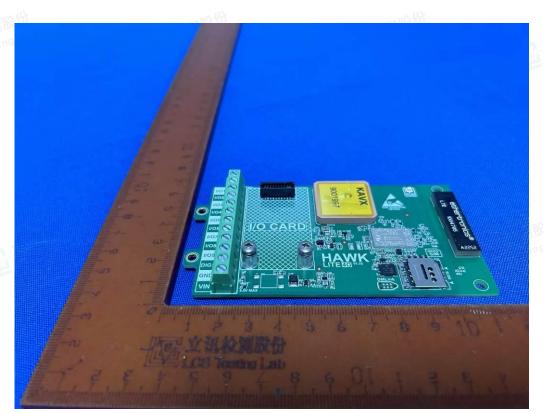



Fig. 5

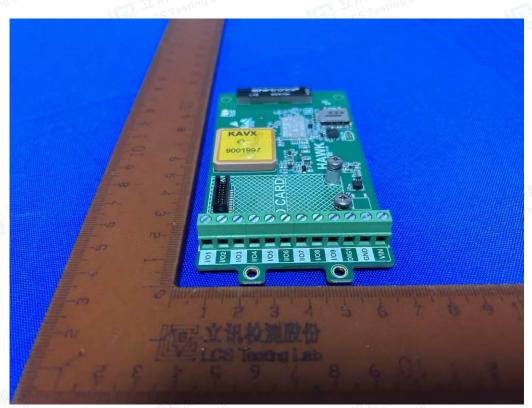



Fig. 6



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com





Fig. 7



Fig. 8



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com







Fig. 9

THE END OF TEST REPORT -



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street,

Bao'an District, Shenzhen, Guangdong, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity