

 1

iLab Solutions API

Last revised March 27, 2023

Table of Contents

Introduction

Current API Instances

1 - Authentication

1.1. Obtaining a client ID and token

Client ID

Token

1.2. Using your client ID and token to request data through the API

2 - Making Requests of the API

A Restful API

XML and JSON

Actions

2.1 Response format

2.2 Pagination - response metadata

3 - Resource Overview

3.1 Cores

GET - List of cores to which you access... /cores

GET - Details of a specific core you have access to /cores/:id

3.2 Services

GET - List of services in a core /cores/:id/services

GET - Details of a specific service in a core /core/:id/services/:id

3.3 Prices

3.4 Service requests

Retrieving Requests

GET - List of service requests belonging to a core /cores/:id/service_requests

GET - Details of a specific service request belonging to a core /core/:id/service_requests/:id

 2

POST - Create service request /cores/:id/service_requests

Validations

PUT - Update specific service request /cores/:id/service_requests/:service_request_id

Filtering for requests

3.5 Service Request Rows

3.6 Custom Forms

GET - list of custom forms

/v1/cores/:core_id/service_requests/:request_id/custom_forms.xml

GET - attachment from custom form /attachments/:attachment_id

3.7 Milestones

Cores often use milestones to organize and track important stages in the service request

lifecycle.

GET - list of milestones /v1/cores/:core_id/service_requests/:request_id/milestones.xml

PUT - update milestone

/v1/cores/:core_id/service_requests/:request_id/milestones/:milestone_id.xml

3.8 Charges on Service Requests

GET - List of charges in a service request

/cores/:core_id/service_requests/:service_request_id/charges.xml

POST - Add charges to a service request

/cores/:core_id/service_requests/:service_request_id/charges.xml

PUT - Update charge information charges to a service request

/cores/:core_id/service_requests/:service_request_id/charges/:charge_id.xml

3.9 Equipment list

GET - List of equipment /cores/:core_id/equipment.xml

 3.10 Attachments on Service Requests

 GET - Download attachment from a service request /v1/attachments/:attachment_id

 POST - Add attachment to a service request /v1/attachments

 DELETE - Delete an attachment from a service request v1/attachments/:attachment_id

4 - Error handling

4.1. 422 Bad Request

4.2. 400 Bad Request

4.3. 401 Unauthorized

4.4. 404 Not Found

4.5. 500 Internal Server Error

 3

Changelog

2017-03-14

2018-02-14

2018-03-10

2018-05-28

2018-07-13

2019-05-22

2019-12-10

2020-04-30

2020-09-12

2021-12-31

2022-01-08

2022-03-12

 2023-01-07

Introduction

This development guide is intended for groups who are collaborating with iLab on projects that

will use the API to deliver additional functionality. A sample application that authenticates

against the API and performs simple price retrieval and updates is available as a learning

resource. Please contact iLab if you would like a copy of the sample application and to obtain

your first sets of client ID and tokens.

The current version of the API is meant to support a number of workflows. Here is an example

of what can be achieved. Green steps occur in iLab, blue steps could occur via the API.

1. The customer or core initiate a service request in iLab

2. The core reviews the request and provides a quote

3. The PI, Lab or Department administrators approve financials when required

4. The core begins to process the request and through the API downloads key files and

data from custom forms that are required by equipment processing requests

5. Depending on experiments run, the core updates the quantity of service delivered in iLab

through the API and adds any charges that were not included up front.

6. The core reviews the request, clicks ‘complete’ on the project in iLab and then creates a

 4

billing event with those charges at the end of the month

Future versions of the API will support scheduling time on equipment and updating custom

forms and uploading files.

Current API Instances

Please contact iLab-support@agilent.com for a list of the current API instances.

1 - Authentication

The iLab API uses an implementation of the OpenAuth 2 specification, as drafted in May

2012. Version 1 of the iLab API uses the Bearer Token variation.

1.1. Obtaining a client ID and token

Client ID

A client ID serves to uniquely identify a client application to your core’s API.

Token

Once a client ID has been generated, tokens can be associated with the client ID that provide a

designated level of access to data through the API.

iLab has now made core-level client ID and token generation self-service if your institution has

enabled API access for their core facilities. If your institution has enabled API access, the API

Clients section will be visible within a core’s Administration tab to core administrators:

Please note that tokens, by default, expire one year from the date of initial generation. If you

would like to set a longer expiration period for your token, take the following steps:

mailto:iLab-support@agilent.com

 5

Go to the API Clients section within your core Administration tab. Click on the link that says “#

token” to expand the details of the particular token that has expired. Place your cursor over the

expiration date and a red pencil will appear. Click on the date and a calendar pop-up will appear

that will allow you to set a new expiration date:

1.2. Using your client ID and token to request data through the API

The access token must be included in the header of each request to the API:
Authorization: bearer %token% \r\n

Each request to the API server must contain the access token. This will ensure that client

applications have the appropriate access levels. This token must be kept secret on the client

side, as it can represent a potential for a man-in-the-middle attack. Note, the iLab server will

reject any requests that are not using SSL, but if you attempt plain-text access the token could

theoretically captured by a third party.

2 - Making Requests of the API

A Restful API

The iLab API is RESTful, meaning it is aware of the HTTP verbs GET, POST, PUT and

DELETE. It will perform the relevant action for the verb on the resource specified by the URL.

Illustrative code examples will be included throughout the documentation:

GET retrieve a resource from the API

POST create a new resource of the type specified

PUT update the resource specified in the URL

DELETE delete the resource specified in the URL

 6

XML and JSON

When you create or update a resource, you must pass the new data in the body of your request

using the same XML or JSON structure that was used to retrieve the resource. You should also

provide the correct headers specifying which data format you are using. For example, if you are

passing in XML, you should add this HTTP header:

Content-Type: application/xml

When you GET data, the response type will depend on the extension you use in your request.

For example...

GET https://{domain}.com/v1/cores.xml

...will retrieve an XML response, while...

GET https://{domain}.com/v1/cores.json

...will retrieve a JSON response. If you do not specify an extension, by default the API will

return JSON

GET https://{domain}.com/v1/cores

For consistency and readability, the rest of the examples will be given in XML.

Actions

Often, resources list the most important actions that can be performed on them. For example,

for a service offered by a core, you would see an ‘actions’ node:

<actions>

<view-prices>

<url>/v1/cores/1234/services/493769/prices.xml</url>

<method>GET</method>

</view-prices>

<update>

<url>/v1/cores/1234/services/493769.xml</url>

<method>PUT</method>

</update>

<delete>

<url>/v1/cores/1234/services/493769.xml</url>

<method>DELETE</method>

</delete>

</actions>

 7

2.1 Response format

All responses from the iLab API come wrapped in the ilab-response node:
<ilab-response>

 ...

</ilab-response>

The response may contain a node with metadata relevant to the response, such as pagination:
<ilab-response>

 <ilab-metadata>

 …

 </ilab-metadata>

</ilab-response>

As was described above, the API will return JSON or XML depending on the extension passed.

2.2 Pagination - response metadata

Pagination information is provided in the ilab-metadata object. Information includes the current

page and the total number of items.

<ilab-response>

 <ilab-metadata>

 <next-page nil="true"/>

<offset type="integer">25</offset>

<previous-page type="integer">1</previous-page>

<total type="integer">48</total>

<total-pages type="integer">1</total-pages>

 </ilab-metadata>

 <!-- the collection would be here →
 ...

</ilab-response>

Changing pages is performed using the parameter page in get request

GET http://api-url/v1/resource?page=2

3 - Resource Overview

3.1 Cores

Cores are the root resource of the API. From a core, you should be able to navigate all of the

resources and actions available.

http://v/

 8

GET - List of cores to which you access... /cores

GET https://{domain}.com/v1/cores.xml

The response will contain an XML (or JSON) object listing all cores to which you have access,

with the current implementation displaying only one core. You will see the name of the core, it’s

settings and a list of further available actions. An example XML response might look like this

(some nodes have been collapsed for brevity):

<cores type="array">

<core>

<name>Molecular Cytogenetics Core</name>

<settings>...</settings>

<homepage>

https://my.ilabsolutions.com/sc/1234/molecular-cytogenetics-core

</homepage>

<actions>

<list-services>

<url>

https://{domain}.com/v1/cores/1234/services.xml

</url>

<action>GET</action>

</list-services>

<list-equipment>

<url>

https://{domain}.com/v1/cores/1234/equipment.xml

</url>

<action>GET</action>

</list-equipment>

</actions>

<price-types type="array"/>

<map>...</map>

</core>

</cores>

GET - Details of a specific core you have access to /cores/:id

To retrieve the details of a specific core, you can GET a specific core ID. In the following

example, 1234 is the id of the core you are interested in:

GET https://{domain}.com/v1/cores/1234.xml

3.2 Services

 9

You can GET the services offered by any core with the following URL:

GET - List of services in a core /cores/:id/services

GET https://{domain}.com/v1/cores/1234/services.xml

GET - Details of a specific service in a core /core/:id/services/:id

You can also GET the details of individual services by requesting a URL in this format:

GET https://{domain}.com/v1/cores/1234/services/493769.xml

This will return a service resource in the following XML format (again some nodes have been

collapsed for brevity):

<service>

<description><p>They were on ice</p></description>

<name>Fish melting</name>

<prices type="array">

<price>

<id type="integer">65</id>

<price type="float">6.0</price>

<public_visibility=”integer”>0</public_visibility>

<actions>...</actions>

<price-type>

<id type="integer">13</id>

<name>External</name>

</price-type>

<unit>

<abbreviation>ea</abbreviation>

<description>each</description>

<id type="integer">37</id>

</unit>

</price>

<price>...</price>

</prices>

<actions>...</actions>

<category>

<id type="integer">1862</id>

<name>Main</name>

</category>

</service>

If you want to update a service, use the same URL and use the PUT HTTP action:

 10

PUT https://{domain}.com/v1/cores/1234/services/493769.xml

In the body of the request, include the same XML you received when you retrieved the

resource, but modify any fields that you would like to change. For example, if you want to

change the first price and the name of the service you would pass on:

<service>

<description><p>They were on ice</p></description>

<name>Elaborate Fish Melting</name>

<prices type="array">

<price>

<id type="integer">65</id>

<price type="float">8.0</price>

<price-type>

<id type="integer">13</id>

<name>External</name>

</price-type>

<unit>

<abbreviation>ea</abbreviation>

<description>each</description>

<id type="integer">37</id>

</unit>

</price>

</prices>

</service>

Normally, you’d only pass along the attributes that you want to update. If you want to set an

attribute to nil, you need to specify that in the XML/JSON explicitly, e.g.:

<category nil="true"/>

Public Visibility setting controls if service is visible on the core's landing page and searchable

on the institution landing page. Allowed values of public_visibility allowed include:

• 0 not visible on landing page

• 1 visible on landing page

3.3 Prices

You can view and update all or individual prices for a given service.

GET https://{domain}.com/v1/cores/1234/services/493801/prices.xml

You can also view an individual price:

 11

GET https://{domain}.com/v1/cores/1234/services/493801/prices/66.xml

...which will return...

<price>

<id type="integer">66</id>

<price type="float">2.0</price>

<actions>

<update>

<url>/v1/cores/1234/services/493801/prices/66.xml</url>

<method>PUT</method>

</update>

<delete>

<url>/v1/cores/1234/services/493801/prices/66.xml</url>

<method>DELETE</method>

</delete>

</actions>

<price-type>

<id type="integer">12</id>

<name>Internal</name>

</price-type>

<unit>

<abbreviation>ea</abbreviation>

<description>each</description>

<id type="integer">37</id>

</unit>

</price>

As indicated by the action node, you can update a price with the following URL...

PUT https://{domain}.com/v1/cores/1234/services/493801/prices/66.xml

and passing through similar XML..:

<price>

<id type="integer">66</id>

<price type="float">4.3</price>

<price-type>

<id type="integer">12</id>

<name>Internal</name>

</price-type>

<unit>

<abbreviation>ea</abbreviation>

<description>each</description>

<id type="integer">37</id>

</unit>

</price>

 12

You can delete a price by calling...

DELETE https://{domain}.com/v1/cores/1234/services/493801/prices/66.xml

If a DELETE request is successful, a 204 - NO CONTENT is expected.

3.4 Service requests

Retrieving Requests

For any core you can GET the following URL (also listed in the core’s actions) to list the service

requests:

GET - List of service requests belonging to a core /cores/:id/service_requests

GET https://{domain}.com/v1/cores/1234/service_requests.xml

By default this will return data from the last two years. You can pass the following parameters

to modify the returned data scope:

from_date (datetime): Only data after this will be included. Default is 2 years ago.

per_page (integer): The number of requests returned per page. Default is 30.

GET - Details of a specific service request belonging to a core

/core/:id/service_requests/:id

You can also view individual service requests by requesting a URL of the type:

GET https://{domain}.com/v1/cores/1234/service_requests/493769.xml

POST - Create service request /cores/:id/service_requests

POST https://{domain}.com/v1/cores/1234/service_requests.xml

<service_request>

 <owner_email>existing_user@email.com</owner_email>

 <pi_email>existing_user@email.com</pi_email> //optional

<name>Optional Request name</name> //optional

<state>processing</state> //optional, default is ‘completed’.

</service_request>

This request will create a service request with the state completed, which can be used as a shell

 13

to add additional charges.

List of parameters:

• owner_email - Email of the user in iLab. user will become an owner of the request.

• pi_email – email of the PI of the group, to which to assign th request. Owner should be

user of the group. Used in case user has multiple groups.

• name – sets Service request name in the system. Default is autogenerated, based on

the settings.

● state – override the default state (“completed”). List of allowed states: proposed,

needs_financial_reapproval, processing, completed

Validations

Some validation of the owner_email and pi_email fields. It returns the following error codes and

messages:

Error code Error message

404 Owner not found

404 Owner Not have access to core or Owner is
not an Employee of Core

404 Owner is not a member of any Group

404 PI not found

404 PI is not present in owner's groups

PUT - Update specific service request

/cores/:id/service_requests/:service_request_id

PUT https://{domain}.com/v1/cores/1234/service_requests/493769.xml

<service_request>

 //fields to update

</service_request>

The following fields can be updated:

name, description, state, completed_on, start_on, end_on, quote_expires_on,

has_recurring, projected_cost, summary

Please find the transitions between states described here.

List of states one can set via API:

https://api.ilabsolutions.com/v1/cores/5582/services/493769.xml
https://gist.github.com/pavel-so/cb24947333f7ade98a025218e797c5ec

 14

● proposed

● needs_financial_reapproval

● processing

● completed

Filtering for requests

You can easily find requests of a particular status by passing through additional filter/query

parameters.

For example:
GET https://{domain}.com/v1/cores/1234/service_requests.xml?q=sample

name&has_recurring=1&to_date=2013-03-12T12:54Z&states=cancelled,disagreement

Here is a list of the available filters that can be used to retrieve service requests:

Filter name Available values Default values

has_recurring 0 or 1 (optional) Both 0 and 1

from_date string ISO 8601 formatted in UTC
(optional)

Time.now - 2.years

to_date string ISO 8601 formatted in UTC
(optional)

Time.now + 1.day

q string for fulltext search (optional) Not applied

name string for exact match search by
name (optional)

Not applied

order order field name created_at

states valid request states(comma
separated list):
 cancelled,
 completed,
 core_disagreement,
 disagreement,
 draft,
 equipment_scheduling,
 financials_approved,
 financials_rejected,
 needs_financial_reapproval,
 processing,
 proposed,
 requested,
 researcher_in_agreement,
 service_center_in_agreement

All states

 15

3.5 Service Request Rows

For any core you can GET the following URL (also listed in the core’s actions) to list out service

request rows. These include charges, milestones and custom forms.
<service-request>

 <service-rows>

 <service-row>

 <position> 1</position>

 <type>charge</type>

 <id>1</id>

 <name>name</name>

 <actions></actions>

 </service-row>

 </service-rows>

</service-request>

3.6 Custom Forms

Custom forms are often used to collect important information from customers required by the

core to deliver projects or services. They are associated to a service request through a service

row.

Custom forms consist of fields. This list is not exhaustive, but the primary attributes of fields are

the following:

attribute description notes/options

name the name or label of the field visible to the customer

type the type of field to be displayed in
the custom form

custom forms can include many
standard form elements, including
radio buttons, pull-down menus
etc...see list below

value the value entered by the customer

default the default value of the field the default must be set in the custom
form template

required whether or not the field is a required
field

iLab’s custom forms support special types that are worth highlighting:

field type description notes

 16

help a field for displaying help to the
customer in the custom form.

this is a display only field and contains
no customer input.

charges charge fields allow the core to
include a list of services in a
custom form from which the
customer can select and enter
quantities

the service ID corresponds to a service
that has been modeled on the core.

file /
file_no_upload /
file_import

file field types allow the core to
provide the customer with a space
to download templates and upload
files.

GET - list of custom forms

/v1/cores/:core_id/service_requests/:request_id/custom_forms.xml

GET https://{domain}.com/v1/cores/123/service_requests/35234/custom_forms.xml

<custom-forms type=”array”>

 <custom-form>...</custom-form>

 <custom-form>...</custom-form>

 …

 <custom-form>...</custom-form>

</custom-forms>

Here is an example custom form resource:

<custom-form>

<id type="integer">29385</id>

<name>Cell Sorting CLONE</name>

<note>

<p><a href="https://content.ilabsolutions.com/wp-

content/uploads/2011/10/Sample-Questionaire.doc" target="_blank">Sample

Questionaire</p><p>Available for download should you be submitting

this on behalf of a new protocol.</p>

</note>

<fields type="array">

<field>

<name>

I agree that my samples do not contain any infectious or radioactive

material. The facility will refuse to sort my samples should they be

labeled in such a way.

</name>

<show-if/>

<required type="boolean">false</required>

 17

<default/>

<type>select</type>

<value>Yes</value>

<choices>,Yes,No</choices>

</field>

<field>

<name>Upload Sample Questionnaire:</name>

<show-if>Is this a new protocol:=Yes</show-if>

<required type="boolean">false</required>

<default/>

<type>file</type>

</field>

<field>

<name>Protocol #:</name>

<show-if>Is this a new protocol:=No</show-if>

<required type="boolean">false</required>

<default/>

<type>string</type>

<value>number</value>

</field>

<field>

<name>Sample Questionnaire for new protocol:</name>

<show-if>Is this a new protocol:=Yes</show-if>

<required type="boolean">false</required>

<default/>

<type>file_no_upload</type>

</field>

<field>

<name>Experiment Information:</name>

<show-if/>

<required type="boolean">false</required>

<default></default>

<type>text_section</type>

<value></value>

</field>

<field>

<name>Fluorochromes:</name>

<show-if/>

<required type="boolean">false</required>

<default/>

<type>string</type>

<value>PE</value>

</field>

<field>

<name>Services:</name>

<show-if/>

<required type="boolean">true</required>

<default/>

 18

<processed>true</processed>

<type>charges</type>

<value type="array">

<value>217701</value>

<value>221103</value>

</value>

<required-services type="array">

<required-service>

<id>217701</id>

<name>Media Preparation</name>

<url>url placeholder</url>

<quantity>2</quantity>

</required-service>

<required-service>

<id>221103</id>

<name>Next Day Expedite (Per Block)</name>

<url>url placeholder</url>

<quantity>0</quantity>

</required-service>

</required-services>

 </field>

<field>

<name>Help Forms</name>

<show-if/>

<required type="boolean">false</required>

<default>Does this show?</default>

<type>help</type>

<value>Does this show?</value>

</field>

<field>

<name>
</name>

<show-if/>

<required type="boolean">false</required>

<default>

To track the shipment go to <a href="http://www.fedex.com/us/"

target="”_new”">FedEx and Enter the tracking number provided.

</default>

<type>text_section</type>

<value>

To track the shipment go to <a href="http://www.fedex.com/us/"

target="”_new”">FedEx and Enter the tracking number provided.

</value>

</field>

</fields>

</custom-form>

 19

Updating custom forms is not supported in the current version of the API.

GET - attachment from custom form /attachments/:attachment_id

Customers often submit data to cores in the form of an attachment, most commonly a csv file or

an excel file. The value provided in the field is the attachment id. So to get the attachment make

a request to:

GET https://{domain}.com/v1/attachments/1231

3.7 Milestones

Cores often use milestones to organize and track important stages in the service request

lifecycle.

GET - list of milestones

/v1/cores/:core_id/service_requests/:request_id/milestones.xml

GET https://{domain}.com/v1/cores/123/service_requests/35234/milestones.xml

<milestones type=”array”>

 <milestone>...</milestone>

 ...

 <milestone>...</milestone>

</milestones>

A milestone has the following properties

<milestone>

<completed-on type="datetime" nil="true"/>

<description/>

<id type="integer">21214</id>

<name>Sample Received</name>

<started-on type="datetime" nil="true"/>

</milestone>

PUT - update milestone

/v1/cores/:core_id/service_requests/:request_id/milestones/:milestone_id.xml

 20

To update milestone just send PUT request to the according url with new milestone data as

below

PUT

https://{domain}.com/v1/cores/1234/service_requests/493801/milestones/66.xml

<milestone>

<completed-on type="datetime"></completed-on>

<description>New description</description>

<name>Sample Received</name>

<started-on type="datetime" nil="true"/>

</milestone>

One can update the following fields: completed-on, description, name, started-on

3.8 Charges on Service Requests

To see the list of charges associated with a service request, one needs to

GET - List of charges in a service request

/cores/:core_id/service_requests/:service_request_id/charges.xml

GET https://{domain}.com/v1/cores/1234/service_requests/123/charges.xml

This will return a list of all charges in the following format:

<charges type=”array”>

 <charge>

 <id>12938</id>

 <name>Fetal Bovine Serum, Certified, Heat Inactivated</name>

 <quantity>1.0</quantity>

 <status>approved</status>

 <billing-status>billed</billing-status>

 <price-id>12093</price-id>

 <service-id>129378</service-id>

 <note>Additional note</note>

 </charge>

 ...

</charges>

POST - Add charges to a service request

/cores/:core_id/service_requests/:service_request_id/charges.xml

 21

Charge rows can be added to a service request through the API. To successfully add a charge

to a service request, you must be able to identify the service request, the service and you must

also indicate the quantity of the service you would like to charge. The default payment

information stored on the service request will be associated with the charge.

POST https://{domain}.com/v1/cores/1234/service_requests/123/charges.xml

with post data:
<charges>

 <charge>

 <quantity>1.5</quantity>

 <price-id>128398</price-id>

 <service-id>12947739</service-id>

 <note>Additional note (Optional)</note>

 </charge>

 <charge>

 <quantity>1.0</quantity>

 <price-id>128398</price-id>

 <service-id>12947729</service-id>

 <note>Additional note 2 (Optional)</note>

 </charge>

</charges>

The above command would add two charges for the service indicated.

The following attributes can be updated on a charge: name(only if core setting “Allow managers

to edit line item name” if set to TRUE), status, billing status, quantity, note. To update charges,

issue the following command...

PUT - Update charge information charges to a service request

/cores/:core_id/service_requests/:service_request_id/charges/:charge_id.xml

PUT https://{domain}.com/v1/cores/1234/service_requests/123/charges/123.xml

with the following request body

 <charge>

 <name>Fetal Bovine Serum, Certified, Heat Inactivated</name>

 <quantity>1.5</quantity>

 <billing-status>not billed</billing-status>

 <status>rejected</status>

 <note>Updated Note(Optional)</note>

 </charge>

 22

By default, a billing status and status are automatically set when a charge is added to a request

- these values depend on the status of the parent service request. The following are allowed

billing and work statuses in case you need to update them:

Billing State notes

cancelled the billing status of any charge that have been

cancelled and will not be billed for.

not_ready_to_bill the billing status when charges are being processed

by the core but are not ready to bill yet.

ready_to_bill the status when a charges is ready to be included

in a billing event. typically, cores bill once a

month and when a new billing event is generated, by

default all ready_to_bill events are included on

the billing event.

not_billable if a charges is not billable for some reason such

as poor sample quality, it can be marked as

not_billable

pro_bono if there is an agreement to perform a particular

piece of work pro-bono, the pro_bono billing status

may be used

billing_initialized billing for charges must occur in iLab by creating

and processing billing events

billed billing for charges must occur in iLab by creating

and processing billing events

paid billing for charges must occur in iLab by creating

and processing billing events

Status notes

proposed when a request is in draft mode or has not yet been

approved, the status is typically proposed.

financials_approved the status applied to charges once a service

request has been approved by an authorized user in

iLab. when a service request has been approved, new

charges automatically receive a status of

financials_approved

processing if desired, a core can indicate that they are

processing a particular charge. this is often used

when a charge represents a specific service that

will be performed.

 23

completed when the work status is updated to completed, it is

assumed that the charge is ready to bill. In the

iLab interface, when a core marks a charges as

completed, the status automatically updates to

ready_to_bill, unless the billing status is

pro_bono, not_billable, cancelled or any of the

post billing states in red.

cancelled

3.9 Equipment list

List equipment registered in the core

GET - List of equipment /cores/:core_id/equipment.xml

GET https://{domain}.com/v1/cores/1234/equipment.xml

This will return a list of all charges in the following format:

<?xml version="1.0" encoding="UTF-8"?>

<ilab-response>

 <equipment type="array">

 <equipment>

 <id type="integer">1</id>

 <name>Core Equipment #1</name>

<pubilc_visibiity>1</public_visibility>

 <description>Some description</description>

 <url>https://my.ilabsolutions/equipment/1</url>

 </equipment>

 ...

 </equipment>

</ilab-response>

Each equipment node describeds the following:

• id – iLab internal ID of the equipment

• name – name of the equipment in iLab

• description – description of the equipment in iLab

• url – URL of the equipment in the iLab Web Interface. Following this URL in browser will

open a page of the equipment in iLab.

• public_visibility – describes visibility on landing page. Can be 0 or 1 or 2

o 0 – Not visible

o 1 – Visible

https://api.ilabsolutions.com/v1/cores/5582/equipment.xml

 24

o 2 – Visible and also calendars are accessible publicly.

3.10 Attachments on Service Requests

Permissions for attachments are based on the users permissions for the core the service

requests belong to. Read access to the core is required to download attachments and update

access is required to add/remove attachments from a service request.

GET - attachment from service request /attachments/:attachment_id

Customers often submit data to cores in the form of an attachment, most commonly a csv file or

an excel file. The value provided in the field is the attachment id. So to get the attachment make

a request to:

GET https://{domain}.com/v1/attachments/1231

POST - add an attachment to a service request /attachments

To add an attachment to a service request. Must include the following params
object_class: “ServiceItem” This is case sensitive and will always be the

same

id: iLab internal ID of the service request

POST https://{domain}.com/v1/attachments?object_class=ServiceItem&id=163

The attachment must be added to the body along with an optional metadata tag to name it as

follows:

attachment[uploaded_data]: file

attachment[name]: “Desired Name” (optional)

This will return the service request that the attachment is added to in the same format as a GET

request for that single service request (which includes all of the attachments associated with

that request)

The filename cannot contain a null byte string in it (“\u0000”)

The following file extensions are blacklisted: .bat, .exe, .tar

The following content-types are blacklisted:

 application/bat
 application/dos-exe
 application/exe
 application/gnutar
 application/msdos-windows

https://api.ilabsolutions.com/v1/cores/5582/service_requests/charges.xml
https://api.ilabsolutions.com/v1/attachments?object_class=ServiceItem&id=163

 25

 application/x-bat
 application/x-exe
 application/x-ms-dos-executable
 application/x-msdos-program
 application/x-msdownload
 application/x-tar
 application/x-winexe
 multipart/x-tar
 vms/exe

DELETE - delete an attachment from a service request /attachments/:id

This will delete an attachment based on its attachment_id

DELETE https://{domain}.com/v1/attachments/1231

This will return the service request that the attachment is added to in the same format as a GET

request for that single service request (which includes all of the attachments associated with

that request)

4 - Error handling

There are several types of errors that the iLab API will return in case there is something wrong

with your request or the API server:

4.1. 422 Bad Request

This may be the most frequent error you get from the API. It usually means that validation has

failed on the data you sent for an update or create request. This could be because of the

formatting on date and time fields, required fields missing, or some other similar problem with

the input data. The body of the response should contain a description of the error which should

help you address its causes.

4.2. 400 Bad Request

This error indicates that the server (remote computer) is unable (or refuses) to process the

request sent by the client, due to an issue that is perceived by the server to be a client problem

(for example, malformed request syntax, invalid request message framing, deceptive request

routing, and incomplete data). Example: A 400 response code will now be returned when a

https://api.ilabsolutions.com/v1/cores/5582/service_requests/charges.xml

 26

ServiceID or PriceID is incorrect (or expired, in the case of PriceIDs).

4.3. 401 Unauthorized

You will get this error when either the access token you have passed is invalid, non-existent, or

it is not authorized to perform the action you are trying to perform. By default, access tokens

expire 1 year from the day of generation and may need to be renewed on an annual basis.

Alternatively, please contact your iLab representative if you would initially like your token

expiration date to be set for a period of > 1 year.

4.4. 404 Not Found

You may get this error if you are trying to access a resource that doesn’t exist or if the URL you

are trying to use to access the resource is invalid. Please check your URL logic and have in

mind the resource may have been deleted via the main iLab application or by another client

application.

4.5. 500 Internal Server Error

Hopefully you should not get this error very frequently, it probably means there is some kind of

misconfiguration on the server side, which may or may not be related to the actual data or

action you are trying to perform. The iLab team will be notified of these errors and will try and fix

them as soon as possible, but feel free to tell us about what you were trying to do and where it

went wrong.

Changelog

2017-03-14

1. Added name filter for service_request search. New filter is exact match filter.

2. Fix for inconsistent format of data in actions section.

a. All the urls there now are full urls.

b. HTTP verb is provided in action and method attributes.

3. PriceType resource collection render format is now consistent. Elements in the collection

are not marked with a key now.

{ "price_types": [{"price_type": {..}, {"price_type": {..}] } - WAS

{ "price_types": [{..}, {..}] } - NOW

4. Links to non-functional resources removed from the core resource actions list:

 27

a. List equipment:

"list_equipment": {"url": "https://example/v1/cores/2917/equipment.json", … }

b. List categories:

"list_categories": {"url": "https://example/v1/cores/2917/categories.json", … }

5. Core settings rendering has been fixed to show all settings available to the user.

2018-02-14

Removed section about service delete action - which is not available, thus misleading.

2018-03-10

● Default payment information is rendered for Service Request:
<service_request>

 ...

 <cost_allocations>

 ...

 </cost_allocations>

 ...

</service_request>

● Changing requests status from processing to completed will automatically complete the

charges on the request and mark them as ready_to_bill where applicable.

2018-05-28

● Service request is now providing the <service_name> which corresponds to the

service/service project template name that was requested.

2018-07-13

Sections representing people(owner, principal_investigator) will now have employee_id

attribute exposed. Employee_id is the field which iLab software receives from a

customer ERP or IdP as a unique user identifier:

XML

 <owner>

 <id type="integer">26384</id>

 <name>Pavel Shegai</name>

 <first-name>Pavel</first-name>

 <last-name>Shegai</last-name>

 <email>pavel.shegai@ilabx.com</email>

 <phone>123123131</phone>

 <employee-id>pavel.shegai</employee-id>

 28

 </owner>

or JSON

"owner": {

 "id": 26384,

 "name": "Pavel Shegai",

 "first_name": "Pavel",

 "last_name": "Shegai",

 "email": "pavel.shegai@ilabx.com",

 "phone": "123123131",

 "employee_id": "pavel.shegai",

 },

2019-05-22

 Bugfix: services endpoint has been rendering services deleted from the UI. We use “soft-

delete” mechanism which was not respected by API. This has been fixed. Now services

removed from the UI will not be available through the API.

2019-12-10

 Feature: added a resource to list equipment in the core.

 Feature: ability to override name and default status of the Service request

2020-04-30

Feature: Exposed public_visibility attribute for equipment and services

Bugfix: Consistent pagination metadata for paginated collections: Charges, Equipment,

Services, Milestones, Service Requests

Bugfix: Deleted and Draft Equipment is not exposed via API.

2020-09-12

 Feature: Charge note is now available for create, read and update as a part of the

Charge. Note field is optional

2021-12-31

 Bugfix: Access tokens are now removed upon deletion of the client/token. Deleted

tokens could previously still be used to authenticate against the API. This has been fixed.

2022-01-08

 29

 Bugfix: API tokens with read-only access were able to create/update/destroy service

requests/charges/prices. This has been fixed.

2022-03-12

 Enhancement: Added new 400 response code to address the following scenarios: a 400

Bad Request error indicates that the server (remote computer) is unable (or refuses) to process

the request sent by the client due to an issue that is perceived by the server to be a client

problem (for example, malformed request syntax, invalid request message framing, deceptive

request routing, and incomplete data). Example: A 400 response code will now be returned

when a ServiceID or PriceID is incorrect (or expired, in the case of PriceIDs).

2023-01-07

 Enhancement: Added new endpoints for creating and deleting attachments for service

requests. Also added the filename as part of the response for service requests under the

‘attachments’ header

2023-01-29

 Bugfix: assigned_to value on service requests objects will now return an array of names

of people that the service has been assigned to. It previously returned null.

